TensorFlow是Google設計的開源python庫,用於開發機器學習模型和深度學習神經網絡。 nextafter()用於在x2方向上查找元素wisenext可表示的x1值。
用法:tf.math.nextafter(x1, x2, name)
參數:
- x1:它是輸入張量。此張量的允許dtype為float64,float32。
- x2:dtype與x1相同的輸入張量。
- name(optional):它定義了操作的名稱。
返回值:
它返回dtype的張量x1。
範例1:
Python3
# Importing the library
import tensorflow as tf
# Initializing the input tensor
x1 = tf.constant([1, 2, -3, -4], dtype = tf.float64)
x2 = tf.constant([5, -7, 3, -8], dtype = tf.float64)
# Printing the input tensor
print('x1:', x1)
print('x2:', x2)
# Calculating result
res = tf.math.nextafter(x1, x2)
# Printing the result
print('Result:', res)
輸出:
x1: tf.Tensor([ 1. 2. -3. -4.], shape=(4, ), dtype=float64) x2: tf.Tensor([ 5. -7. 3. -8.], shape=(4, ), dtype=float64) Result: tf.Tensor([ 1. 2. -3. -4.], shape=(4, ), dtype=float64)
範例2:本示例對x1和x2使用不同的dtype。它將引發InvalidArgumentError。
Python3
# importing the library
import tensorflow as tf
# Initializing the input tensor
x1 = tf.constant([1, 2, -3, -4], dtype = tf.float64)
x2 = tf.constant([5, -7, 3, -8], dtype = tf.float32)
# Printing the input tensor
print('x1:', x1)
print('x2:', x2)
# Calculating result
res = tf.math.nextafter(x1, x2)
# Printing the result
print('Result:', res)
輸出:
x1: tf.Tensor([ 1. 2. -3. -4.], shape=(4, ), dtype=float64) x2: tf.Tensor([ 5. -7. 3. -8.], shape=(4, ), dtype=float32) --------------------------------------------------------------------------- InvalidArgumentError Traceback (most recent call last) in () 8 9 # Calculating result ---> 10 res = tf.math.nextafter(x1, x2) 11 12 # Printing the result 2 frames /usr/local/lib/python3.6/dist-packages/six.py in raise_from(value, from_value) InvalidArgumentError:cannot compute NextAfter as input #1(zero-based) was expected to be a double tensor but is a float tensor [Op:NextAfter]
相關用法
注:本文由純淨天空篩選整理自aman neekhara大神的英文原創作品 Python – tensorflow.math.nextafter()。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。