當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


Python sympy.fibonacci()用法及代碼示例


借助於sympy.fibonacci()方法,我們可以在SymPy中找到斐波那契數和斐波那契多項式。

fibonacci(n) -
The Fibonacci numbers are the integer sequence defined by the initial terms F_0 = 0, F_1 = 1 and the two-term recurrence relation F_n = F_{n-1} + F_{n-2}.

用法: fibonacci(n) 

參數:
n - It denotes the number upto which Fibonacci number is to be calculated.

返回:Returns the nth Fibonacci number.

範例1:

# import sympy  
from sympy import * 
  
n = 7
print("Value of n = {}".format(n)) 
   
# Use sympy.fibonacci() method  
nth_fibonacci = fibonacci(n)   
      
print("Value of nth fibonacci number:{}".format(nth_fibonacci))  

輸出:

Value of n = 7
Value of nth fibonacci number:13

fibonacci(n, k) -

斐波那契多項式定義為F_1(k) = 1F_2(k) = kF_n(k) = k*F_{n-1}(k) + F_{n-2}(k)對於n > 2。對於所有正整數nF_n(1) = F_n

用法: fibonacci(n, k) 

參數:
n -它表示nth斐波那契多項式。
k -它表示斐波那契多項式中的變量。


返回:返回k,F中的第n個斐波那契多項式n(k)

範例2:

# import sympy  
from sympy import * 
  
n = 5
k = symbols('x') 
print("Value of n = {} and k = {}".format(n, k)) 
   
# Use sympy.fibonacci() method  
nth_fibonacci_poly = fibonacci(n, k)   
      
print("The nth fibonacci polynomial:{}".format(nth_fibonacci_poly))  

輸出:

Value of n = 5 and k = x
The nth fibonacci polynomial:x**4 + 3*x**2 + 1

範例3:

# import sympy  
from sympy import * 
  
n = 6
k = 3
print("Value of n = {} and k = {}".format(n, k)) 
   
# Use sympy.fibonacci() method  
nth_fibonacci_poly = fibonacci(n, k)   
      
print("The nth fibonacci polynomial value:{}".format(nth_fibonacci_poly))  

輸出:

Value of n = 6 and k = 3
The nth fibonacci polynomial value:360


相關用法


注:本文由純淨天空篩選整理自rupesh_rao大神的英文原創作品 Python | sympy.fibonacci() method。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。