本文簡要介紹python語言中 sklearn.model_selection.LeaveOneOut
的用法。
用法:
class sklearn.model_selection.LeaveOneOut
留一cross-validator
提供訓練/測試索引以拆分訓練/測試集中的數據。每個樣本被用作測試集(單例),而其餘樣本形成訓練集。
注意:
LeaveOneOut()
等價於KFold(n_splits=n)
和LeavePOut(p=1)
,其中n
是樣本數。由於測試集的數量很大(與樣本數量相同),這種交叉驗證方法可能非常昂貴。對於大型數據集,應該支持
KFold
、ShuffleSplit
或StratifiedKFold
。在用戶指南中閱讀更多信息。
例子:
>>> import numpy as np >>> from sklearn.model_selection import LeaveOneOut >>> X = np.array([[1, 2], [3, 4]]) >>> y = np.array([1, 2]) >>> loo = LeaveOneOut() >>> loo.get_n_splits(X) 2 >>> print(loo) LeaveOneOut() >>> for train_index, test_index in loo.split(X): ... print("TRAIN:", train_index, "TEST:", test_index) ... X_train, X_test = X[train_index], X[test_index] ... y_train, y_test = y[train_index], y[test_index] ... print(X_train, X_test, y_train, y_test) TRAIN: [1] TEST: [0] [[3 4]] [[1 2]] [2] [1] TRAIN: [0] TEST: [1] [[1 2]] [[3 4]] [1] [2]
相關用法
- Python sklearn LeaveOneGroupOut用法及代碼示例
- Python sklearn LeavePOut用法及代碼示例
- Python sklearn LeavePGroupsOut用法及代碼示例
- Python sklearn LedoitWolf用法及代碼示例
- Python sklearn LarsCV用法及代碼示例
- Python sklearn Lars用法及代碼示例
- Python sklearn LocalOutlierFactor.kneighbors_graph用法及代碼示例
- Python sklearn Lasso用法及代碼示例
- Python sklearn LabelPropagation用法及代碼示例
- Python sklearn LassoLars用法及代碼示例
- Python sklearn LogisticRegression用法及代碼示例
- Python sklearn LassoLarsIC用法及代碼示例
- Python sklearn LocallyLinearEmbedding用法及代碼示例
- Python sklearn LassoCV.path用法及代碼示例
- Python sklearn LogisticRegressionCV用法及代碼示例
- Python sklearn LinearDiscriminantAnalysis用法及代碼示例
- Python sklearn LassoCV用法及代碼示例
- Python sklearn LabelSpreading用法及代碼示例
- Python sklearn LabelEncoder用法及代碼示例
- Python sklearn LinearRegression用法及代碼示例
- Python sklearn LocalOutlierFactor.kneighbors用法及代碼示例
- Python sklearn LabelBinarizer用法及代碼示例
- Python sklearn LinearSVR用法及代碼示例
- Python sklearn LinearSVC用法及代碼示例
- Python sklearn LassoLarsCV用法及代碼示例
注:本文由純淨天空篩選整理自scikit-learn.org大神的英文原創作品 sklearn.model_selection.LeaveOneOut。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。