pandas.concat()函數進行連接操作的所有繁重工作與在其他軸上執行索引(如果有)的可選設置邏輯(聯合或交集)時,將在 Pandas 軸上創建一個軸。
用法: concat(objs, axis, join, ignore_index, keys, levels, names, verify_integrity, sort, copy)
參數:
- objs:係列或DataFrame對象
- axis:連接的軸;默認值= 0
- join:處理其他軸上的索引的方式;默認值= ‘outer’
- ignore_index:如果為True,則不要沿連接軸使用索引值;默認值= False
- keys:向結果索引添加標識符的順序;默認=無
- levels:用於構造MultiIndex的特定級別(唯一值);默認=無
- names:生成的層次索引中的級別名稱;默認=無
- verify_integrity:檢查新的串聯軸是否包含重複項;默認值= False
- sort:如果聯接為‘outer’時未對齊軸,則對非串聯軸進行排序;默認值= False
- copy:如果為False,則不要複製數據;默認= True
Returns:objs類型(DataFrame係列)
範例1:將2係列與默認參數串聯。
Python3
# importing the module
import pandas as pd
# creating the Series
series1 = pd.Series([1, 2, 3])
display('series1:', series1)
series2 = pd.Series(['A', 'B', 'C'])
display('series2:', series2)
# concatenating
display('After concatenating:')
display(pd.concat([series1, series2]))
輸出:
範例2:水平連接2個序列,索引為1
Python3
# importing the module
import pandas as pd
# creating the Series
series1 = pd.Series([1, 2, 3])
display('series1:', series1)
series2 = pd.Series(['A', 'B', 'C'])
display('series2:', series2)
# concatenating
display('After concatenating:')
display(pd.concat([series1, series2],
axis = 1))
輸出:
範例3:連接2個DataFrame並分配鍵。
Python3
# importing the module
import pandas as pd
# creating the DataFrames
df1 = pd.DataFrame({'A':['A0', 'A1', 'A2', 'A3'],
'B':['B0', 'B1', 'B2', 'B3']})
display('df1:', df1)
df2 = pd.DataFrame({'A':['A4', 'A5', 'A6', 'A7'],
'B':['B4', 'B5', 'B6', 'B7']})
display('df2:', df2)
# concatenating
display('After concatenating:')
display(pd.concat([df1, df2],
keys = ['key1', 'key2']))
輸出:
範例4:水平連接2個DataFrames,其中axis = 1。
Python3
# importing the module
import pandas as pd
# creating the DataFrames
df1 = pd.DataFrame({'A':['A0', 'A1', 'A2', 'A3'],
'B':['B0', 'B1', 'B2', 'B3']})
display('df1:', df1)
df2 = pd.DataFrame({'C':['C0', 'C1', 'C2', 'C3'],
'D':['D0', 'D1', 'D2', 'D3']})
display('df2:', df2)
# concatenating
display('After concatenating:')
display(pd.concat([df1, df2],
axis = 1))
輸出:
範例5:用ignore_index = True串聯2個 DataFrame ,以便新的索引值顯示在串聯的DataFrame中。
Python3
# importing the module
import pandas as pd
# creating the DataFrames
df1 = pd.DataFrame({'A':['A0', 'A1', 'A2', 'A3'],
'B':['B0', 'B1', 'B2', 'B3']})
display('df1:', df1)
df2 = pd.DataFrame({'A':['A4', 'A5', 'A6', 'A7'],
'B':['B4', 'B5', 'B6', 'B7']})
display('df2:', df2)
# concatenating
display('After concatenating:')
display(pd.concat([df1, df2],
ignore_index = True))
輸出:
範例6:將DataFrame與Series串聯。
Python3
# importing the module
import pandas as pd
# creating the DataFrame
df = pd.DataFrame({'A':['A0', 'A1', 'A2', 'A3'],
'B':['B0', 'B1', 'B2', 'B3']})
display('df:', df1)
# creating the Series
series = pd.Series([1, 2, 3, 4])
display('series:', series)
# concatenating
display('After concatenating:')
display(pd.concat([df, series],
axis = 1))
輸出:
相關用法
- Python Wand function()用法及代碼示例
- Python Sorted()用法及代碼示例
- Python Numbers choice()用法及代碼示例
- Python Tkinter askopenfile()用法及代碼示例
- Python ord()用法及代碼示例
- Python sum()用法及代碼示例
- Python round()用法及代碼示例
- Python id()用法及代碼示例
- Python vars()用法及代碼示例
注:本文由純淨天空篩選整理自Yash_R大神的英文原創作品 pandas.concat() function in Python。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。