numpy.place(array,mask,vals):根據參數-條件和值在數組中進行更改(根據用戶設置的掩碼,使用第一個N-values放入數組中)。它與numpy.extract()相反。
參數:
array : [ndarray] Input array, we need to make changes into mask : [array_like]Boolean that must have same size as that of the input array value : Values to put into the array. Based on the mask condition it adds only N-elements to the array. If in case values in val are smaller than the mask, same values get repeated.
返回:
Array with change elements i.e. new elements being put
# Python Program illustrating
# numpy.place() method
import numpy as geek
array = geek.arange(12).reshape(3, 4)
print("Original array : \n", array)
# Putting new elements
a = geek.place(array, array > 5, [15, 25, 35])
print("\nPutting up elements to array: \n", array)
array1 = geek.arange(6).reshape(2, 3)
print("\n\nOriginal array1 : \n", array)
# Putting new elements
a = geek.place(array1, array1>2, [44, 55])
print("\nPutting new elements to array1 : \n", array1)
輸出:
Original array : [[ 0 1 2 3] [ 4 5 6 7] [ 8 9 10 11]] Putting up elements to array: [[ 0 1 2 3] [ 4 5 15 25] [35 15 25 35]] Original array1 : [[ 0 1 2 3] [ 4 5 15 25] [35 15 25 35]] Putting new elements to array1 : [[ 0 1 2] [44 55 44]]
參考文獻:
https://docs.scipy.org/doc/numpy-dev/reference/generated/numpy.place.html#numpy.place
相關用法
注:本文由純淨天空篩選整理自 numpy.place() in Python。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。