Math.Sinh(Single)方法是內置的MathF類方法,它返回給定單值參數的雙曲正弦值。
用法: public static float Sinh (float x);
Here, x is the number whose hyperbolic sine is to be returned and type of this parameter is System.Single.
返回值:此方法返回System.Single類型的x的雙曲正弦值。如果x等於NegativeInfinity或PositiveInfinity,則返回PositiveInfinity。如果x等於NaN,則返回NaN。
以下示例程序旨在說明上述方法的用法:
示例1:
// C# program to illustrate the
// MathF.Sinh(Single) Method
using System;
class GFG {
// Main Method
public static void Main(String[] args)
{
float num1 = 45.0f, num2 = 0.0f, num3 = 1.0f;
// It returns the hyperbolic sine of
// specified angle in radian
float sinhvalue = MathF.Sinh(num1);
Console.WriteLine("The Sinh of num1 = " + sinhvalue);
sinhvalue = MathF.Sinh(num2);
Console.WriteLine("The Sinh of num2 = " + sinhvalue);
sinhvalue = MathF.Sinh(num3);
Console.WriteLine("The Sinh of num3 = " + sinhvalue);
}
}
輸出:
The Sinh of num1 = 1.746714E+19 The Sinh of num2 = 0 The Sinh of num3 = 1.175201
示例2:
// C# praogram to illustrate the
// MathF.Sinh(Single) Method
using System;
class GFG {
// Main Method
public static void Main()
{
float num1 = (60 * (MathF.PI)) / 180;
// calling result() method
result(num1);
result(Single.NaN);
result(Single.NegativeInfinity);
result(Single.PositiveInfinity);
}
// defining result() method
public static void result(float value)
{
// using the method
float result = MathF.Sinh(value);
// Display the value
Console.WriteLine("Sinh({0}) will be {1}",
value, result);
}
}
輸出:
Sinh(1.047198) will be 1.249367 Sinh(NaN) will be NaN Sinh(-Infinity) will be -Infinity Sinh(Infinity) will be Infinity
相關用法
- C# MathF.Exp()用法及代碼示例
- C# MathF.Cos()用法及代碼示例
- C# MathF.Tan()用法及代碼示例
- C# MathF.Abs()用法及代碼示例
- C# MathF.Min()用法及代碼示例
- C# MathF.Sin()用法及代碼示例
- C# MathF.Pow()用法及代碼示例
- C# MathF.Log()用法及代碼示例
- C# MathF.Max()用法及代碼示例
- C# MathF.Cbrt()用法及代碼示例
- C# Char.GetTypeCode()用法及代碼示例
- C# Char.GetHashCode()用法及代碼示例
- C# MathF.Atan()用法及代碼示例
- C# BitArray.RightShift()用法及代碼示例
- C# BitArray.LeftShift()用法及代碼示例
注:本文由純淨天空篩選整理自Kirti_Mangal大神的英文原創作品 MathF.Sinh() Method in C# with Examples。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。