當前位置: 首頁>>代碼示例>>Python>>正文


Python utils.mkdir方法代碼示例

本文整理匯總了Python中utils.mkdir方法的典型用法代碼示例。如果您正苦於以下問題:Python utils.mkdir方法的具體用法?Python utils.mkdir怎麽用?Python utils.mkdir使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils的用法示例。


在下文中一共展示了utils.mkdir方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: snapshot

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def snapshot(self, path):
        if not os.path.exists(path):
            if os.name == 'nt':
                os.system('mkdir {}'.format(path.replace('/', '\\')))
            else:
                os.system('mkdir -p {}'.format(path))
        # save every 100 tick if the network is in stab phase.
        ndis = 'dis_R{}_T{}.pth.tar'.format(int(floor(self.resl)), self.globalTick)
        ngen = 'gen_R{}_T{}.pth.tar'.format(int(floor(self.resl)), self.globalTick)
        if self.globalTick%50==0:
            if self.phase == 'gstab' or self.phase =='dstab' or self.phase == 'final':
                save_path = os.path.join(path, ndis)
                if not os.path.exists(save_path):
                    torch.save(self.get_state('dis'), save_path)
                    save_path = os.path.join(path, ngen)
                    torch.save(self.get_state('gen'), save_path)
                    print('[snapshot] model saved @ {}'.format(path)) 
開發者ID:nashory,項目名稱:pggan-pytorch,代碼行數:19,代碼來源:trainer.py

示例2: save_results

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def save_results(state, steps, visualize=True, subfolder=''):
    if not state.get_output_flag():
        logging.warning('Skip saving results because output_flag is False')
        return

    expr_dir = os.path.join(state.get_save_directory(), subfolder)
    utils.mkdir(expr_dir)
    save_data_path = os.path.join(expr_dir, 'results.pth')

    steps = [(d.detach().cpu(), l.detach().cpu(), lr) for (d, l, lr) in steps]
    if visualize:
        vis_results(state, steps, expr_dir)

    torch.save(steps, save_data_path)
    logging.info('Results saved to {}'.format(save_data_path)) 
開發者ID:SsnL,項目名稱:dataset-distillation,代碼行數:17,代碼來源:io.py

示例3: save_test_results

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def save_test_results(state, results):
    assert state.phase != 'train'
    if not state.get_output_flag():
        logging.warning('Skip saving test results because output_flag is False')
        return

    test_dir = state.get_save_directory()
    utils.mkdir(test_dir)
    result_file = os.path.join(test_dir, 'results.pth')
    torch.save(results, os.path.join(test_dir, 'results.pth'))
    logging.info('Test results saved as {}'.format(result_file)) 
開發者ID:SsnL,項目名稱:dataset-distillation,代碼行數:13,代碼來源:io.py

示例4: test_workteamjob

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def test_workteamjob(
    kfp_client, experiment_id, region, sagemaker_client, test_file_dir
):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    workteam_name, workflow_json = create_workteamjob(
        kfp_client, experiment_id, region, sagemaker_client, test_file_dir, download_dir
    )

    outputs = {"sagemaker-private-workforce": ["workteam_arn"]}

    try:
        output_files = minio_utils.artifact_download_iterator(
            workflow_json, outputs, download_dir
        )

        response = sagemaker_utils.describe_workteam(sagemaker_client, workteam_name)

        # Verify WorkTeam was created in SageMaker
        assert response["Workteam"]["CreateDate"] is not None
        assert response["Workteam"]["WorkteamName"] == workteam_name

        # Verify WorkTeam arn artifact was created in Minio and matches the one in SageMaker
        workteam_arn = utils.read_from_file_in_tar(
            output_files["sagemaker-private-workforce"]["workteam_arn"],
            "workteam_arn.txt",
        )
        assert response["Workteam"]["WorkteamArn"] == workteam_arn

    finally:
        # Cleanup the SageMaker Resources
        sagemaker_utils.delete_workteam(sagemaker_client, workteam_name)

    # Delete generated files only if the test is successful
    utils.remove_dir(download_dir) 
開發者ID:kubeflow,項目名稱:pipelines,代碼行數:37,代碼來源:test_workteam_component.py

示例5: generate_frames

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def generate_frames(loc,start_idx,end_idx):
    # get frames for each video clip
    # loc        | the location of video clip
    # v_name     | v_name = 'clip_video_train'
    # start_idx  | the starting index of the training sample
    # end_idx    | the ending index of the training sample

    utils.mkdir('frames')
    for i in range(start_idx, end_idx):
        command = 'cd %s;' % loc
        f_name = str(i)
        command += 'ffmpeg -i %s.mp4 -y -f image2  -vframes 75 ../frames/%s-%%02d.jpg' % (f_name, f_name)
        os.system(command) 
開發者ID:JusperLee,項目名稱:Looking-to-Listen-at-the-Cocktail-Party,代碼行數:15,代碼來源:video_download.py

示例6: download_video_frames

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def download_video_frames(loc,d_csv,start_idx,end_idx,rm_video):
    # Download each video and convert to frames immediately, can choose to remove video file
    # loc        | the location for downloaded file
    # cat        | the catalog with audio link and time
    # start_idx  | the starting index of the video to download
    # end_idx    | the ending index of the video to download
    # rm_video   | boolean value for delete video and only keep the frames

    utils.mkdir('frames')
    for i in range(start_idx, end_idx):
        command = 'cd %s;' % loc
        f_name = str(i)
        link = "https://www.youtube.com/watch?v="+d_csv.loc[i][0]
        start_time = d_csv.loc[i][1]
        #start_time = 90
        start_time = time.strftime("%H:%M:%S.0",time.gmtime(start_time))
        command += 'youtube-dl --prefer-ffmpeg -f "mp4" -o o' + f_name + '.mp4 ' + link + ';'
        command += 'ffmpeg -i o'+f_name+'.mp4'+' -c:v h264 -c:a copy -ss '+str(start_time)+' -t '+"3 "+f_name+'.mp4;'
        command += 'rm o%s.mp4;' % f_name
        #ommand += 'ffmpeg -i %s.mp4 -r 25 %s.mp4;' % (f_name, 'clip_' + f_name)  # convert fps to 25
        #command += 'rm %s.mp4;' % f_name

        #converts to frames
        #command += 'ffmpeg -i %s.mp4 -y -f image2  -vframes 75 ../frames/%s-%%02d.jpg;' % (f_name, f_name)
        command += 'ffmpeg -i %s.mp4 -vf fps=25 ../frames/%s-%%02d.jpg;' % (f_name, f_name)
        #command += 'ffmpeg -i %s.mp4 ../frames/%sfr_%%02d.jpg;' % ('clip_' + f_name, f_name)

        if rm_video:
            command += 'rm %s.mp4;' % f_name
        os.system(command)
        print("\r Process video... ".format(i) + str(i), end="")
    print("\r Finish !!", end="") 
開發者ID:JusperLee,項目名稱:Looking-to-Listen-at-the-Cocktail-Party,代碼行數:34,代碼來源:video_download.py

示例7: __init__

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def __init__(self):
        utils.mkdir('repo/tensorboard')
        
        for i in range(1000):
            self.targ = 'repo/tensorboard/try_{}'.format(i)
            if not os.path.exists(self.targ):
                self.writer = SummaryWriter(self.targ)
                break 
開發者ID:nashory,項目名稱:pggan-pytorch,代碼行數:10,代碼來源:tf_recorder.py

示例8: download

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def download(
    url_entry,
    scraper=args.scraper,
    save_uncompressed=args.save_uncompressed,
    memoize=args.scraper_memoize,
):
    uid, url = url_entry
    url = url.strip()
    fid = "{:07d}-{}".format(uid, md5(url.encode()).hexdigest())

    # is_good_link, link_type = vet_link(url)
    # if not is_good_link:
    #     return

    if scraper == "bs4":
        scrape = bs4_scraper
    elif scraper == "newspaper":
        scrape = newspaper_scraper
    elif scraper == "raw":
        scrape = raw_scraper

    text, meta = scrape(url, memoize)
    if text is None or text.strip() == "":
        return ("", "", fid, uid)

    if save_uncompressed:
        month = extract_month(args.url_file)
        data_dir = mkdir(op.join(args.output_dir, "data", month))
        meta_dir = mkdir(op.join(args.output_dir, "meta", month))
        text_fp = op.join(data_dir, "{}.txt".format(fid))
        meta_fp = op.join(meta_dir, "{}.json".format(fid))

        with open(text_fp, "w") as out:
            out.write(text)
        with open(meta_fp, "w") as out:
            json.dump(meta, out)

    return (text, meta, fid, uid) 
開發者ID:jcpeterson,項目名稱:openwebtext,代碼行數:40,代碼來源:download.py

示例9: archive_chunk

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def archive_chunk(month, cid, cdata, out_dir, fmt):
    mkdir(out_dir)
    texts, metas, fids, uids = zip(*cdata)

    data_tar = op.join(out_dir, "{}-{}_data.{}".format(month, cid, fmt))
    meta_tar = op.join(out_dir, "{}-{}_meta.{}".format(month, cid, fmt))
    tar_fps, texts, exts = [data_tar, meta_tar], [texts, metas], ["txt", "json"]

    doc_count = 0
    docs_counted = False
    for tar_fp, txts, ext in zip(tar_fps, texts, exts):
        with tarfile.open(tar_fp, "w:" + fmt) as tar:
            for f, fid in zip(txts, fids):
                if f == "":
                    continue
                else:
                    if not docs_counted:
                        doc_count += 1

                if ext == "json":
                    f = json.dumps(f)

                f = f.encode("utf-8")
                t = tarfile.TarInfo("{}.{}".format(fid, ext))
                t.size = len(f)
                tar.addfile(t, io.BytesIO(f))
        docs_counted = True

    return doc_count


#######################################################################
#                           Util functions                            #
####################################################################### 
開發者ID:jcpeterson,項目名稱:openwebtext,代碼行數:36,代碼來源:download.py

示例10: get_state

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def get_state(month, out_dir):
    mkdir("state")
    latest_cid = 0
    completed_uids = set()
    state_fp = op.join("state", "{}.txt".format(month))
    if op.isfile(state_fp):
        archives = glob(op.join(out_dir, "{}-*".format(month)))
        latest_cid = max([int(a.split("-")[-1].split("_")[0]) for a in archives])
        with open(state_fp, "r") as fh:
            completed_uids = set(int(i.strip()) for i in list(fh))
    return completed_uids, state_fp, latest_cid 
開發者ID:jcpeterson,項目名稱:openwebtext,代碼行數:13,代碼來源:download.py

示例11: _vis_results_fn

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def _vis_results_fn(np_steps, distilled_images_per_class_per_step, dataset_info, arch, dpi,
                    vis_dir=None, vis_name_fmt='visuals_step{step:03d}',
                    cmap=None, supertitle=True, subtitle=True, fontsize=None,
                    reuse_axes=True):
    if vis_dir is None:
        logging.warning('Not saving because vis_dir is not given')
    else:
        vis_name_fmt += '.png'
        utils.mkdir(vis_dir)

    dataset, nc, input_size, mean, std, label_names = dataset_info

    N = len(np_steps[0][0])
    nrows = max(2, distilled_images_per_class_per_step)
    grid = (nrows, np.ceil(N / float(nrows)).astype(int))
    plt.rcParams["figure.figsize"] = (grid[1] * 1.5 + 1, nrows * 1.5 + 1)

    plt.close('all')
    fig, axes = plt.subplots(nrows=grid[0], ncols=grid[1])
    axes = axes.flatten()
    if supertitle:
        fmts = [
            'Dataset: {dataset}',
            'Arch: {arch}',
        ]
        if len(np_steps) > 1:
            fmts.append('Step: {{step}}')
        if np_steps[0][-1] is not None:
            fmts.append('LR: {{lr:.4f}}')
        supertitle_fmt = ', '.join(fmts).format(dataset=dataset, arch=arch)

    plt_images = []
    first_run = True
    for i, (data, labels, lr) in enumerate(np_steps):
        for n, (img, label, axis) in enumerate(zip(data, labels, axes)):
            if nc == 1:
                img = img[..., 0]
            img = (img * std + mean).clip(0, 1)
            if first_run:
                plt_images.append(axis.imshow(img, interpolation='nearest', cmap=cmap))
            else:
                plt_images[n].set_data(img)
            if first_run:
                axis.axis('off')
                if subtitle:
                    axis.set_title('Label {}'.format(label_names[label]), fontsize=fontsize)
        if supertitle:
            if lr is not None:
                lr = lr.sum().item()
            plt.suptitle(supertitle_fmt.format(step=i, lr=lr), fontsize=fontsize)
            if first_run:
                plt.tight_layout(pad=0.4, w_pad=0.5, h_pad=1.0, rect=[0, 0, 1, 0.95])
        fig.canvas.draw()
        if vis_dir is not None:
            plt.savefig(os.path.join(vis_dir, vis_name_fmt.format(step=i)), dpi=dpi)
        if reuse_axes:
            first_run = False
        else:
            fig, axes = plt.subplots(nrows=grid[0], ncols=grid[1])
            axes = axes.flatten()
            plt.show() 
開發者ID:SsnL,項目名稱:dataset-distillation,代碼行數:63,代碼來源:io.py

示例12: test_trainingjob

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def test_trainingjob(
    kfp_client, experiment_id, region, sagemaker_client, test_file_dir
):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        )
    )

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    outputs = {
        "sagemaker-training-job": ["job_name", "model_artifact_url", "training_image"]
    }
    output_files = minio_utils.artifact_download_iterator(
        workflow_json, outputs, download_dir
    )

    # Verify Training job was successful on SageMaker
    training_job_name = utils.read_from_file_in_tar(
        output_files["sagemaker-training-job"]["job_name"], "job_name.txt"
    )
    print(f"training job name: {training_job_name}")
    train_response = sagemaker_utils.describe_training_job(
        sagemaker_client, training_job_name
    )
    assert train_response["TrainingJobStatus"] == "Completed"

    # Verify model artifacts output was generated from this run
    model_artifact_url = utils.read_from_file_in_tar(
        output_files["sagemaker-training-job"]["model_artifact_url"],
        "model_artifact_url.txt",
    )
    print(f"model_artifact_url: {model_artifact_url}")
    assert model_artifact_url == train_response["ModelArtifacts"]["S3ModelArtifacts"]
    assert training_job_name in model_artifact_url

    # Verify training image output is an ECR image
    training_image = utils.read_from_file_in_tar(
        output_files["sagemaker-training-job"]["training_image"], "training_image.txt",
    )
    print(f"Training image used: {training_image}")
    if "ExpectedTrainingImage" in test_params.keys():
        assert test_params["ExpectedTrainingImage"] == training_image
    else:
        assert f"dkr.ecr.{region}.amazonaws.com" in training_image

    utils.remove_dir(download_dir) 
開發者ID:kubeflow,項目名稱:pipelines,代碼行數:61,代碼來源:test_train_component.py

示例13: test_createmodel

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def test_createmodel(kfp_client, experiment_id, sagemaker_client, test_file_dir):

    download_dir = utils.mkdir(os.path.join(test_file_dir + "/generated"))
    test_params = utils.load_params(
        utils.replace_placeholders(
            os.path.join(test_file_dir, "config.yaml"),
            os.path.join(download_dir, "config.yaml"),
        )
    )

    # Generate random prefix for model name to avoid errors if model with same name exists
    test_params["Arguments"]["model_name"] = input_model_name = (
        utils.generate_random_string(5) + "-" + test_params["Arguments"]["model_name"]
    )
    print(f"running test with model_name: {input_model_name}")

    _, _, workflow_json = kfp_client_utils.compile_run_monitor_pipeline(
        kfp_client,
        experiment_id,
        test_params["PipelineDefinition"],
        test_params["Arguments"],
        download_dir,
        test_params["TestName"],
        test_params["Timeout"],
    )

    outputs = {"sagemaker-create-model": ["model_name"]}

    output_files = minio_utils.artifact_download_iterator(
        workflow_json, outputs, download_dir
    )

    output_model_name = utils.read_from_file_in_tar(
        output_files["sagemaker-create-model"]["model_name"], "model_name.txt"
    )
    print(f"model_name: {output_model_name}")
    assert output_model_name == input_model_name
    assert (
        sagemaker_utils.describe_model(sagemaker_client, input_model_name) is not None
    )

    utils.remove_dir(download_dir) 
開發者ID:kubeflow,項目名稱:pipelines,代碼行數:44,代碼來源:test_model_component.py

示例14: validate

# 需要導入模塊: import utils [as 別名]
# 或者: from utils import mkdir [as 別名]
def validate(opts, model, loader, device, metrics, ret_samples_ids=None):
    """Do validation and return specified samples"""
    metrics.reset()
    ret_samples = []
    if opts.save_val_results:
        if not os.path.exists('results'):
            os.mkdir('results')
        denorm = utils.Denormalize(mean=[0.485, 0.456, 0.406], 
                                   std=[0.229, 0.224, 0.225])
        img_id = 0

    with torch.no_grad():
        for i, (images, labels) in tqdm(enumerate(loader)):
            
            images = images.to(device, dtype=torch.float32)
            labels = labels.to(device, dtype=torch.long)

            outputs = model(images)
            preds = outputs.detach().max(dim=1)[1].cpu().numpy()
            targets = labels.cpu().numpy()

            metrics.update(targets, preds)
            if ret_samples_ids is not None and i in ret_samples_ids:  # get vis samples
                ret_samples.append(
                    (images[0].detach().cpu().numpy(), targets[0], preds[0]))

            if opts.save_val_results:
                for i in range(len(images)):
                    image = images[i].detach().cpu().numpy()
                    target = targets[i]
                    pred = preds[i]

                    image = (denorm(image) * 255).transpose(1, 2, 0).astype(np.uint8)
                    target = loader.dataset.decode_target(target).astype(np.uint8)
                    pred = loader.dataset.decode_target(pred).astype(np.uint8)

                    Image.fromarray(image).save('results/%d_image.png' % img_id)
                    Image.fromarray(target).save('results/%d_target.png' % img_id)
                    Image.fromarray(pred).save('results/%d_pred.png' % img_id)

                    fig = plt.figure()
                    plt.imshow(image)
                    plt.axis('off')
                    plt.imshow(pred, alpha=0.7)
                    ax = plt.gca()
                    ax.xaxis.set_major_locator(matplotlib.ticker.NullLocator())
                    ax.yaxis.set_major_locator(matplotlib.ticker.NullLocator())
                    plt.savefig('results/%d_overlay.png' % img_id, bbox_inches='tight', pad_inches=0)
                    plt.close()
                    img_id += 1

        score = metrics.get_results()
    return score, ret_samples 
開發者ID:VainF,項目名稱:DeepLabV3Plus-Pytorch,代碼行數:55,代碼來源:main.py


注:本文中的utils.mkdir方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。