當前位置: 首頁>>代碼示例>>Python>>正文


Python boxes.bbox_transform_inv方法代碼示例

本文整理匯總了Python中utils.boxes.bbox_transform_inv方法的典型用法代碼示例。如果您正苦於以下問題:Python boxes.bbox_transform_inv方法的具體用法?Python boxes.bbox_transform_inv怎麽用?Python boxes.bbox_transform_inv使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.boxes的用法示例。


在下文中一共展示了boxes.bbox_transform_inv方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def _compute_targets(ex_rois, gt_rois, labels, stage=0):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    if cfg.FAST_RCNN.USE_CASCADE:
        bbox_reg_weights = cfg.CASCADE_RCNN.BBOX_REG_WEIGHTS[stage]
    else:
        bbox_reg_weights = cfg.MODEL.BBOX_REG_WEIGHTS
    targets = box_utils.bbox_transform_inv(ex_rois, gt_rois, bbox_reg_weights)
    # Use class "1" for all fg boxes if using class_agnostic_bbox_reg
    if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
        labels.clip(max=1, out=labels)
    return np.hstack((labels[:, np.newaxis], targets)).astype(
        np.float32, copy=False) 
開發者ID:funnyzhou,項目名稱:FPN-Pytorch,代碼行數:19,代碼來源:fast_rcnn.py

示例2: compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def compute_targets(ex_rois, gt_rois, weights=(1.0, 1.0, 1.0, 1.0)):
    """Compute bounding-box regression targets for an image."""
    return box_utils.bbox_transform_inv(ex_rois, gt_rois, weights).astype(
        np.float32, copy=False
    ) 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:7,代碼來源:data_utils.py

示例3: _compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = box_utils.bbox_transform_inv(ex_rois, gt_rois,
                                           cfg.MODEL.BBOX_REG_WEIGHTS)
    # Use class "1" for all fg boxes if using class_agnostic_bbox_reg
    if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG:
        labels.clip(max=1, out=labels)
    return np.hstack((labels[:, np.newaxis], targets)).astype(
        np.float32, copy=False) 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:16,代碼來源:fast_rcnn.py

示例4: _compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def _compute_targets(entry):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    rois = entry['boxes']
    overlaps = entry['max_overlaps']
    labels = entry['max_classes']
    gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0]
    # Targets has format (class, tx, ty, tw, th)
    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return targets

    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = box_utils.bbox_overlaps(
        rois[ex_inds, :].astype(dtype=np.float32, copy=False),
        rois[gt_inds, :].astype(dtype=np.float32, copy=False))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]
    # Use class "1" for all boxes if using class_agnostic_bbox_reg
    targets[ex_inds, 0] = (
        1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds])
    targets[ex_inds, 1:] = box_utils.bbox_transform_inv(
        ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS)
    return targets 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:34,代碼來源:roidb.py

示例5: test_bbox_transform_and_inverse

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def test_bbox_transform_and_inverse(self):
        weights = (5, 5, 10, 10)
        src_boxes = random_boxes([10, 10, 20, 20], 1, 10)
        dst_boxes = random_boxes([10, 10, 20, 20], 1, 10)
        deltas = box_utils.bbox_transform_inv(
            src_boxes, dst_boxes, weights=weights
        )
        dst_boxes_reconstructed = box_utils.bbox_transform(
            src_boxes, deltas, weights=weights
        )
        np.testing.assert_array_almost_equal(
            dst_boxes, dst_boxes_reconstructed, decimal=5
        ) 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:15,代碼來源:test_bbox_transform.py

示例6: test_bbox_dataset_to_prediction_roundtrip

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def test_bbox_dataset_to_prediction_roundtrip(self):
        """Simulate the process of reading a ground-truth box from a dataset,
        make predictions from proposals, convert the predictions back to the
        dataset format, and then use the COCO API to compute IoU overlap between
        the gt box and the predictions. These should have IoU of 1.
        """
        weights = (5, 5, 10, 10)
        # 1/ "read" a box from a dataset in the default (x1, y1, w, h) format
        gt_xywh_box = [10, 20, 100, 150]
        # 2/ convert it to our internal (x1, y1, x2, y2) format
        gt_xyxy_box = box_utils.xywh_to_xyxy(gt_xywh_box)
        # 3/ consider nearby proposal boxes
        prop_xyxy_boxes = random_boxes(gt_xyxy_box, 10, 10)
        # 4/ compute proposal-to-gt transformation deltas
        deltas = box_utils.bbox_transform_inv(
            prop_xyxy_boxes, np.array([gt_xyxy_box]), weights=weights
        )
        # 5/ use deltas to transform proposals to xyxy predicted box
        pred_xyxy_boxes = box_utils.bbox_transform(
            prop_xyxy_boxes, deltas, weights=weights
        )
        # 6/ convert xyxy predicted box to xywh predicted box
        pred_xywh_boxes = box_utils.xyxy_to_xywh(pred_xyxy_boxes)
        # 7/ use COCO API to compute IoU
        not_crowd = [int(False)] * pred_xywh_boxes.shape[0]
        ious = COCOmask.iou(pred_xywh_boxes, np.array([gt_xywh_box]), not_crowd)
        np.testing.assert_array_almost_equal(ious, np.ones(ious.shape)) 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:29,代碼來源:test_bbox_transform.py

示例7: _compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = box_utils.bbox_transform_inv(
        ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS
    )
    return np.hstack((labels[:, np.newaxis], targets)).astype(
        np.float32, copy=False
    ) 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:15,代碼來源:fast_rcnn.py

示例8: get_location_info

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def get_location_info(human_boxes, object_boxes, union_boxes):
    assert human_boxes.shape[1] == object_boxes.shape[1] == union_boxes.shape[1] == 4
    human_object_loc = box_utils.bbox_transform_inv(human_boxes, object_boxes)
    human_union_loc = box_utils.bbox_transform_inv(human_boxes, union_boxes)
    object_union_loc = box_utils.bbox_transform_inv(object_boxes, union_boxes)
    return np.concatenate((human_object_loc, human_union_loc, object_union_loc), axis=1) 
開發者ID:bobwan1995,項目名稱:PMFNet,代碼行數:8,代碼來源:hoi_data_union.py

示例9: _compute_action_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def _compute_action_targets(person_rois, gt_boxes, role_ids):
    '''
    Compute action targets
    :param person_rois: rois assigned to gt acting-human, n * 4
    :param gt_boxes: all gt boxes in one image
    :param role_ids: person_rois_num * action_cls_num * NUM_TARGET_OBJECT_TYPES,
                     store person rois corresponding role object ids.
    :return:
    '''
    assert person_rois.shape[0] == role_ids.shape[0]
    # ToDo: should use cfg.MODEL.BBOX_REG_WEIGHTS?
    # calculate targets between every person rois and every gt_boxes
    targets = box_utils.bbox_transform_inv(np.repeat(person_rois, gt_boxes.shape[0], axis=0),
                                           np.tile(gt_boxes, (person_rois.shape[0], 1)),
                                           (1., 1., 1., 1.)).reshape(person_rois.shape[0], gt_boxes.shape[0], -1)
    # human action targets is (person_num: 16, action_num: 26, role_cls: 2, relative_location: 4)
    human_action_targets = np.zeros((role_ids.shape[0], role_ids.shape[1],
                                     role_ids.shape[2], 4), dtype=np.float32)
    action_target_weights = np.zeros_like(human_action_targets, dtype=np.float32)
    # get action targets relative location
    human_action_targets[np.where(role_ids > -1)] = \
        targets[np.where(role_ids > -1)[0], role_ids[np.where(role_ids > -1)].astype(int)]
    action_target_weights[np.where(role_ids > -1)] = 1.

    return human_action_targets.reshape(-1, cfg.VCOCO.NUM_ACTION_CLASSES * cfg.VCOCO.NUM_TARGET_OBJECT_TYPES * 4), \
            action_target_weights.reshape(-1, cfg.VCOCO.NUM_ACTION_CLASSES * cfg.VCOCO.NUM_TARGET_OBJECT_TYPES * 4) 
開發者ID:bobwan1995,項目名稱:PMFNet,代碼行數:28,代碼來源:hoi_data.py

示例10: _compute_action_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def _compute_action_targets(person_rois, gt_boxes, role_ids):
    '''
    Compute action targets
    :param person_rois: rois assigned to gt acting-human, n * 4
    :param gt_boxes: all gt boxes in one image
    :param role_ids: person_rois_num * action_cls_num * num_target_object_types, store person rois corresponding role object ids
    :return:
    '''

    assert person_rois.shape[0] == role_ids.shape[0]
    # should use cfg.MODEL.BBOX_REG_WEIGHTS?
    # calculate targets between every person rois and every gt_boxes
    targets = box_utils.bbox_transform_inv(np.repeat(person_rois, gt_boxes.shape[0], axis=0),
                                           np.tile(gt_boxes, (person_rois.shape[0], 1)),
                                           (1., 1., 1., 1.)).reshape(person_rois.shape[0], gt_boxes.shape[0], -1)
    # human action targets is (person_num: 16, action_num: 26, role_cls: 2, relative_location: 4)
    # don't use np.inf, so that actions without target_objects could kept
    human_action_targets = np.zeros((role_ids.shape[0], role_ids.shape[1],
                                     role_ids.shape[2], 4), dtype=np.float32)
    action_target_weights = np.zeros_like(human_action_targets, dtype=np.float32)
    # get action targets relative location
    human_action_targets[np.where(role_ids > -1)] = \
        targets[np.where(role_ids > -1)[0], role_ids[np.where(role_ids > -1)].astype(int)]
    action_target_weights[np.where(role_ids > -1)] = 1.

    return human_action_targets.reshape(-1, cfg.VCOCO.NUM_ACTION_CLASSES * 2 * 4), \
            action_target_weights.reshape(-1, cfg.VCOCO.NUM_ACTION_CLASSES * 2 * 4)


# ------------------------------- HOI union ------------------------------------ 
開發者ID:bobwan1995,項目名稱:PMFNet,代碼行數:32,代碼來源:test.py

示例11: generate_triplets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_transform_inv [as 別名]
def generate_triplets(human_boxes, object_boxes):
    human_inds, object_inds = np.meshgrid(np.arange(human_boxes.shape[0]),
                                          np.arange(object_boxes.shape[0]), indexing='ij')
    human_inds, object_inds = human_inds.reshape(-1), object_inds.reshape(-1)

    union_boxes = box_utils.get_union_box(human_boxes[human_inds][:, 1:],
                                          object_boxes[object_inds][:, 1:])
    union_boxes = np.hstack((np.zeros((union_boxes.shape[0], 1), dtype=union_boxes.dtype), union_boxes))
    spatial_info = box_utils.bbox_transform_inv(human_boxes[human_inds][:, 1:],
                                                object_boxes[object_inds][:, 1:])

    return human_inds, object_inds, union_boxes, spatial_info


# --------------------- Check bottleneck --------------------------- 
開發者ID:bobwan1995,項目名稱:PMFNet,代碼行數:17,代碼來源:test.py


注:本文中的utils.boxes.bbox_transform_inv方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。