當前位置: 首頁>>代碼示例>>Python>>正文


Python boxes.bbox_overlaps方法代碼示例

本文整理匯總了Python中utils.boxes.bbox_overlaps方法的典型用法代碼示例。如果您正苦於以下問題:Python boxes.bbox_overlaps方法的具體用法?Python boxes.bbox_overlaps怎麽用?Python boxes.bbox_overlaps使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在utils.boxes的用法示例。


在下文中一共展示了boxes.bbox_overlaps方法的13個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: box_filter

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def box_filter(boxes, must_overlap=False):
    """ Only include boxes that overlap as possible relations. 
    If no overlapping boxes, use all of them."""
    n_cands = boxes.shape[0]

    overlaps = box_utils.bbox_overlaps(boxes.astype(np.float32), boxes.astype(np.float32)) > 0
    np.fill_diagonal(overlaps, 0)

    all_possib = np.ones_like(overlaps, dtype=np.bool)
    np.fill_diagonal(all_possib, 0)

    if must_overlap:
        possible_boxes = np.column_stack(np.where(overlaps))

        if possible_boxes.size == 0:
            possible_boxes = np.column_stack(np.where(all_possib))
    else:
        possible_boxes = np.column_stack(np.where(all_possib))
    return possible_boxes 
開發者ID:jz462,項目名稱:Large-Scale-VRD.pytorch,代碼行數:21,代碼來源:get_dataset_counts_rel.py

示例2: _compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _compute_targets(entry):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    rois = entry['boxes']
    overlaps = entry['max_overlaps']
    labels = entry['max_classes']
    gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0]
    # Targets has format (class, tx, ty, tw, th)
    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return targets

    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = box_utils.bbox_overlaps(
        rois[ex_inds, :].astype(dtype=np.float32, copy=False),
        rois[gt_inds, :].astype(dtype=np.float32, copy=False))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]
    # Use class "1" for all boxes if using class_agnostic_bbox_reg
    targets[ex_inds, 0] = (
        1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds])
    targets[ex_inds, 1:] = box_utils.bbox_transform_inv(
        ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS)
    return targets 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:34,代碼來源:roidb.py

示例3: _build_graph

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _build_graph(boxes, iou_threshold):
    """Build graph based on box IoU"""
    overlaps = box_utils.bbox_overlaps(
        boxes.astype(dtype=np.float32, copy=False),
        boxes.astype(dtype=np.float32, copy=False))

    return (overlaps > iou_threshold).astype(np.float32) 
開發者ID:ppengtang,項目名稱:pcl.pytorch,代碼行數:9,代碼來源:pcl.py

示例4: test_cython_bbox_iou_against_coco_api_bbox_iou

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def test_cython_bbox_iou_against_coco_api_bbox_iou(self):
        """Check that our cython implementation of bounding box IoU overlap
        matches the COCO API implementation.
        """
        def _do_test(b1, b2):
            # Compute IoU overlap with the cython implementation
            cython_iou = box_utils.bbox_overlaps(b1, b2)
            # Compute IoU overlap with the COCO API implementation
            # (requires converting boxes from xyxy to xywh format)
            xywh_b1 = box_utils.xyxy_to_xywh(b1)
            xywh_b2 = box_utils.xyxy_to_xywh(b2)
            not_crowd = [int(False)] * b2.shape[0]
            coco_ious = COCOmask.iou(xywh_b1, xywh_b2, not_crowd)
            # IoUs should be similar
            np.testing.assert_array_almost_equal(
                cython_iou, coco_ious, decimal=5
            )

        # Test small boxes
        b1 = random_boxes([10, 10, 20, 20], 5, 10)
        b2 = random_boxes([10, 10, 20, 20], 5, 10)
        _do_test(b1, b2)

        # Test bigger boxes
        b1 = random_boxes([10, 10, 110, 20], 20, 10)
        b2 = random_boxes([10, 10, 110, 20], 20, 10)
        _do_test(b1, b2) 
開發者ID:ronghanghu,項目名稱:seg_every_thing,代碼行數:29,代碼來源:test_bbox_transform.py

示例5: get_gt_keypoints

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def get_gt_keypoints(entry, human_boxes, interaction_human_inds, im_scale):
    gt_human_inds = np.where(entry['gt_classes'] == 1)[0]
    gt_human_boxes = entry['boxes'][gt_human_inds]
    human_to_gt_ov = box_utils.bbox_overlaps(
        (human_boxes[:, 1:]/im_scale).astype(dtype=np.float32, copy=False),
        gt_human_boxes.astype(dtype=np.float32, copy=False))
    human_to_gt_inds = human_to_gt_ov.argmax(axis=1)
    human_to_gt_box_ind = gt_human_inds[human_to_gt_inds[interaction_human_inds]]
    gt_keypoints = entry['gt_keypoints'][human_to_gt_box_ind]
    return gt_keypoints 
開發者ID:bobwan1995,項目名稱:PMFNet,代碼行數:12,代碼來源:test.py

示例6: _compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _compute_targets(entry):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    rois = entry['boxes'][:, :4]
    overlaps = entry['max_overlaps']
    labels = entry['max_classes']
    gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0]
    # Targets has format (class, tx, ty, tw, th)
    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return targets

    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = box_utils.bbox_overlaps(
        rois[ex_inds, :].astype(dtype=np.float32, copy=False),
        rois[gt_inds, :].astype(dtype=np.float32, copy=False))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]
    # Use class "1" for all boxes if using class_agnostic_bbox_reg
    targets[ex_inds, 0] = (
        1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds])
    targets[ex_inds, 1:] = box_utils.bbox_transform_inv(
        ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS)
    return targets 
開發者ID:lvpengyuan,項目名稱:masktextspotter.caffe2,代碼行數:34,代碼來源:roidb_text.py

示例7: _compute_pred_matches

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _compute_pred_matches(gt_triplets, pred_triplets,
                 gt_boxes, pred_boxes, iou_thresh=0.5, phrdet=False):
    """
    Given a set of predicted triplets, return the list of matching GT's for each of the
    given predictions
    :param gt_triplets: 
    :param pred_triplets: 
    :param gt_boxes: 
    :param pred_boxes: 
    :param iou_thresh: 
    :return: 
    """
    # This performs a matrix multiplication-esque thing between the two arrays
    # Instead of summing, we want the equality, so we reduce in that way
    # The rows correspond to GT triplets, columns to pred triplets
    keeps = intersect_2d(gt_triplets, pred_triplets)
    gt_has_match = keeps.any(1)
    pred_to_gt = [[] for x in range(pred_boxes.shape[0])]
    for gt_ind, gt_box, keep_inds in zip(np.where(gt_has_match)[0],
                                         gt_boxes[gt_has_match],
                                         keeps[gt_has_match],
                                         ):
        boxes = pred_boxes[keep_inds]
        if phrdet:
            gt_box = gt_box.astype(dtype=np.float32, copy=False)
            boxes = boxes.astype(dtype=np.float32, copy=False)
            rel_iou = bbox_overlaps(gt_box[None, :], boxes)[0]

            inds = rel_iou >= iou_thresh
        else:
            gt_box = gt_box.astype(dtype=np.float32, copy=False)
            boxes = boxes.astype(dtype=np.float32, copy=False)
            sub_iou = bbox_overlaps(gt_box[None,:4], boxes[:, :4])[0]
            obj_iou = bbox_overlaps(gt_box[None,4:], boxes[:, 4:])[0]

            inds = (sub_iou >= iou_thresh) & (obj_iou >= iou_thresh)

        for i in np.where(keep_inds)[0][inds]:
            pred_to_gt[i].append(int(gt_ind))
    return pred_to_gt 
開發者ID:jz462,項目名稱:Large-Scale-VRD.pytorch,代碼行數:42,代碼來源:task_evaluation_rel.py

示例8: _compute_targets

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _compute_targets(entry):
    """Compute bounding-box regression targets for an image."""
    # Indices of ground-truth ROIs
    rois = entry['boxes']
    overlaps = entry['max_overlaps']
    labels = entry['max_classes']
    gt_inds = np.where((entry['gt_classes'] > 0) & (entry['is_crowd'] == 0))[0]
    # Targets has format (class, tx, ty, tw, th, tx2, ty2, tw2, th2...)
    # (for each time frame)
    targets = np.zeros((rois.shape[0], rois.shape[1] + 1), dtype=np.float32)
    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return targets

    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = box_utils.bbox_overlaps(
        rois[ex_inds, :].astype(dtype=np.float32, copy=False),
        rois[gt_inds, :].astype(dtype=np.float32, copy=False))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]
    # Use class "1" for all boxes if using class_agnostic_bbox_reg
    targets[ex_inds, 0] = (
        1 if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG else labels[ex_inds])
    targets[ex_inds, 1:] = box_utils.bbox_transform_inv(
        ex_rois, gt_rois, cfg.MODEL.BBOX_REG_WEIGHTS)
    return targets 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:35,代碼來源:roidb.py

示例9: _compute_pairwise_iou

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _compute_pairwise_iou(a, b):
    """
    a, b (np.ndarray) of shape Nx4T and Mx4T.
    The output is NxM, for each combination of boxes.
    """
    return box_utils.bbox_overlaps(a, b) 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:8,代碼來源:tracking_engine.py

示例10: _get_proposal_clusters

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _get_proposal_clusters(all_rois, proposals, im_labels, cls_prob):
    """Generate a random sample of RoIs comprising foreground and background
    examples.
    """
    num_images, num_classes = im_labels.shape
    assert num_images == 1, 'batch size shoud be equal to 1'
    # overlaps: (rois x gt_boxes)
    gt_boxes = proposals['gt_boxes']
    gt_labels = proposals['gt_classes']
    gt_scores = proposals['gt_scores']
    overlaps = box_utils.bbox_overlaps(
        all_rois.astype(dtype=np.float32, copy=False),
        gt_boxes.astype(dtype=np.float32, copy=False))
    gt_assignment = overlaps.argmax(axis=1)
    max_overlaps = overlaps.max(axis=1)
    labels = gt_labels[gt_assignment, 0]
    cls_loss_weights = gt_scores[gt_assignment, 0]

    # Select foreground RoIs as those with >= FG_THRESH overlap
    fg_inds = np.where(max_overlaps >= cfg.TRAIN.FG_THRESH)[0]

    # Select background RoIs as those with < FG_THRESH overlap
    bg_inds = np.where(max_overlaps < cfg.TRAIN.FG_THRESH)[0]

    ig_inds = np.where(max_overlaps < cfg.TRAIN.BG_THRESH)[0]
    cls_loss_weights[ig_inds] = 0.0

    labels[bg_inds] = 0
    gt_assignment[bg_inds] = -1

    img_cls_loss_weights = np.zeros(gt_boxes.shape[0], dtype=np.float32)
    pc_probs = np.zeros(gt_boxes.shape[0], dtype=np.float32)
    pc_labels = np.zeros(gt_boxes.shape[0], dtype=np.int32)
    pc_count = np.zeros(gt_boxes.shape[0], dtype=np.int32)

    for i in xrange(gt_boxes.shape[0]):
        po_index = np.where(gt_assignment == i)[0]
        img_cls_loss_weights[i] = np.sum(cls_loss_weights[po_index])
        pc_labels[i] = gt_labels[i, 0]
        pc_count[i] = len(po_index)
        pc_probs[i] = np.average(cls_prob[po_index, pc_labels[i]])

    return labels, cls_loss_weights, gt_assignment, pc_labels, pc_probs, pc_count, img_cls_loss_weights 
開發者ID:ppengtang,項目名稱:pcl.pytorch,代碼行數:45,代碼來源:pcl.py

示例11: test_det_bbox_gt_action

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def test_det_bbox_gt_action(hoi_blob_in, entry, im_info):
    # check interaction branch, bbox res from test, interaction from gt
    gt_human_inds = np.where(entry['gt_classes'] == 1)[0]
    gt_human_boxes = entry['boxes'][gt_human_inds]

    pred_human_boxes = hoi_blob_in['human_boxes']/im_info[0, 2]
    human_pred_gt_overlaps = box_utils.bbox_overlaps(
                pred_human_boxes[:, 1:].astype(dtype=np.float32, copy=False),
                gt_human_boxes.astype(dtype=np.float32, copy=False))
    human_pred_to_gt_inds = np.argmax(human_pred_gt_overlaps, axis=1)
    human_ious = human_pred_gt_overlaps.max(axis=1)[:, None]
    human_score = np.zeros(human_ious.shape)
    human_score[np.where(human_ious > 0.5)] = 1

    # assign gt interaction to mapping pred bboxes
    human_action = entry['gt_actions'][gt_human_inds[human_pred_to_gt_inds]]
    # multiply iou to human action, better localization better action score
    # human_action = human_ious * human_action
    human_action = human_score * human_action

    # ------------------------------- Targets -----------------------------------
    # ipdb.set_trace()
    pred_target_boxes = hoi_blob_in['object_boxes']/im_info[0, 2]
    target_pred_gt_overlaps = box_utils.bbox_overlaps(
                pred_target_boxes[:, 1:].astype(dtype=np.float32, copy=False),
                entry['boxes'].astype(dtype=np.float32, copy=False))
    target_pred_to_gt_inds = np.argmax(target_pred_gt_overlaps, axis=1)
    target_ious = target_pred_gt_overlaps.max(axis=1)[:, None]
    target_score = np.zeros(target_ious.shape)
    target_score[np.where(target_ious > 0.5)] = 1

    gt_action_mat = generate_action_mat(entry['gt_role_id'])
    # ToDo: there is a problem, here we ignore `interaction triplets` that
    # targets is invisible
    action_labels = gt_action_mat[gt_human_inds[human_pred_to_gt_inds[hoi_blob_in['interaction_human_inds']]],
                                  target_pred_to_gt_inds[hoi_blob_in['interaction_object_inds']]]
    # triplet_ious = human_ious[hoi_blob_in['interaction_human_inds']] * \
    #                 target_ious[hoi_blob_in['interaction_object_inds']]
    # # multiply iou
    # action_labels = triplet_ious[:, None] * action_labels

    triplet_scores = human_score[hoi_blob_in['interaction_human_inds']] * \
                    target_score[hoi_blob_in['interaction_object_inds']]
    action_labels = triplet_scores[:, None] * action_labels

    # convert to 24-class
    interaction_action_mask = np.array(cfg.VCOCO.ACTION_MASK).T
    action_labels = action_labels[:, np.where(interaction_action_mask > 0)[0], np.where(interaction_action_mask > 0)[1]]

    hoi_blob_in['human_action_score'] = torch.from_numpy(human_action).float().cuda()
    hoi_blob_in['interaction_action_score'] = torch.from_numpy(action_labels).float().cuda()

    return hoi_blob_in 
開發者ID:bobwan1995,項目名稱:PMFNet,代碼行數:55,代碼來源:test.py

示例12: remove_mis_group

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def remove_mis_group(hoi_blob_in, entry, im_scale):
    gt_human_inds = np.where(entry['gt_classes'] == 1)[0]
    gt_human_boxes = entry['boxes'][gt_human_inds]

    pred_human_boxes = hoi_blob_in['human_boxes'][:, 1:]/im_scale
    # if len(pred_human_boxes[0]) == 0:
    #     return None
    human_pred_gt_overlaps = box_utils.bbox_overlaps(
                pred_human_boxes.astype(dtype=np.float32, copy=False),
                gt_human_boxes.astype(dtype=np.float32, copy=False))

    human_pred_to_gt_inds = np.argmax(human_pred_gt_overlaps, axis=1)
    human_ious = human_pred_gt_overlaps.max(axis=1)[:, None]
    valid_human_ind = np.where(human_ious > 0.5)[0]

    # ------------------------------- Targets -----------------------------------
    # ipdb.set_trace()
    pred_obj_boxes = hoi_blob_in['object_boxes'][:, 1:]/im_scale
    obj_pred_gt_overlaps = box_utils.bbox_overlaps(
                pred_obj_boxes.astype(dtype=np.float32, copy=False),
                entry['boxes'].astype(dtype=np.float32, copy=False))
    obj_pred_to_gt_inds = np.argmax(obj_pred_gt_overlaps, axis=1)
    obj_ious = obj_pred_gt_overlaps.max(axis=1)[:, None]
    valid_obj_ind = np.where(obj_ious > 0.5)[0]

    interact_matrix = np.zeros([pred_human_boxes.shape[0], pred_obj_boxes.shape[0]])
    interact_matrix[hoi_blob_in['interaction_human_inds'], hoi_blob_in['interaction_object_inds']] = 1
    valid_matrix = np.zeros([pred_human_boxes.shape[0], pred_obj_boxes.shape[0]]) - 1
    valid_matrix[valid_human_ind, :] += 1
    valid_matrix[:, valid_obj_ind] += 1
    valid_matrix = valid_matrix * interact_matrix
    valid_interaction_human_inds, valid_interaction_obj_inds = np.where(valid_matrix==1)

    gt_action_mat = generate_action_mat(entry['gt_role_id'])
    # ToDo: there is a problem, here we ignore `interaction triplets` that
    # targets is invisible
    action_labels = gt_action_mat[
        gt_human_inds[human_pred_to_gt_inds[valid_interaction_human_inds]],
        obj_pred_to_gt_inds[valid_interaction_obj_inds]]
    # action_labels = action_labels.reshape(action_labels.shape[0], -1)
    no_gt_rel_ind = np.where(action_labels.sum(1).sum(1) == 0)

    ret = np.ones([pred_human_boxes.shape[0], pred_obj_boxes.shape[0]])
    ret[valid_interaction_human_inds[no_gt_rel_ind],
        valid_interaction_obj_inds[no_gt_rel_ind]] = 0
    return ret 
開發者ID:bobwan1995,項目名稱:PMFNet,代碼行數:48,代碼來源:test.py

示例13: _merge_proposal_boxes_into_roidb

# 需要導入模塊: from utils import boxes [as 別名]
# 或者: from utils.boxes import bbox_overlaps [as 別名]
def _merge_proposal_boxes_into_roidb(roidb, box_list):
    assert len(box_list) == len(roidb)
    for i, entry in enumerate(roidb):
        boxes = box_list[i]
        num_boxes = boxes.shape[0]
        gt_overlaps = np.zeros(
            (num_boxes, entry['gt_overlaps'].shape[1]),
            dtype=entry['gt_overlaps'].dtype)
        box_to_gt_ind_map = -np.ones(
            (num_boxes), dtype=entry['box_to_gt_ind_map'].dtype)

        # Note: unlike in other places, here we intentionally include all gt
        # rois, even ones marked as crowd. Boxes that overlap with crowds will
        # be filtered out later (see: _filter_crowd_proposals).
        gt_inds = np.where(entry['gt_classes'] > 0)[0]
        if len(gt_inds) > 0:
            gt_boxes = entry['boxes'][gt_inds, :]
            gt_classes = entry['gt_classes'][gt_inds]
            proposal_to_gt_overlaps = box_utils.bbox_overlaps(
                boxes.astype(dtype=np.float32, copy=False),
                gt_boxes.astype(dtype=np.float32, copy=False))
            # Gt box that overlaps each input box the most
            # (ties are broken arbitrarily by class order)
            argmaxes = proposal_to_gt_overlaps.argmax(axis=1)
            # Amount of that overlap
            maxes = proposal_to_gt_overlaps.max(axis=1)
            # Those boxes with non-zero overlap with gt boxes
            I = np.where(maxes > 0)[0]
            # Record max overlaps with the class of the appropriate gt box
            gt_overlaps[I, gt_classes[argmaxes[I]]] = maxes[I]
            box_to_gt_ind_map[I] = gt_inds[argmaxes[I]]
        entry['boxes'] = np.append(
            entry['boxes'],
            boxes.astype(entry['boxes'].dtype, copy=False),
            axis=0)
        entry['gt_classes'] = np.append(
            entry['gt_classes'],
            np.zeros((num_boxes), dtype=entry['gt_classes'].dtype))
        entry['seg_areas'] = np.append(
            entry['seg_areas'],
            np.zeros((num_boxes), dtype=entry['seg_areas'].dtype))
        entry['gt_overlaps'] = np.append(
            entry['gt_overlaps'].toarray(), gt_overlaps, axis=0)
        entry['gt_overlaps'] = scipy.sparse.csr_matrix(entry['gt_overlaps'])
        entry['is_crowd'] = np.append(
            entry['is_crowd'],
            np.zeros((num_boxes), dtype=entry['is_crowd'].dtype))
        entry['box_to_gt_ind_map'] = np.append(
            entry['box_to_gt_ind_map'],
            box_to_gt_ind_map.astype(
                entry['box_to_gt_ind_map'].dtype, copy=False)) 
開發者ID:facebookresearch,項目名稱:DetectAndTrack,代碼行數:53,代碼來源:json_dataset.py


注:本文中的utils.boxes.bbox_overlaps方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。