當前位置: 首頁>>代碼示例>>Python>>正文


Python util.AverageMeter方法代碼示例

本文整理匯總了Python中util.AverageMeter方法的典型用法代碼示例。如果您正苦於以下問題:Python util.AverageMeter方法的具體用法?Python util.AverageMeter怎麽用?Python util.AverageMeter使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在util的用法示例。


在下文中一共展示了util.AverageMeter方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: train

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def train(epoch, net, trainloader, device, optimizer, loss_fn, max_grad_norm):
    print('\nEpoch: %d' % epoch)
    net.train()
    loss_meter = util.AverageMeter()
    with tqdm(total=len(trainloader.dataset)) as progress_bar:
        for x, _ in trainloader:
            x = x.to(device)
            optimizer.zero_grad()
            z, sldj = net(x, reverse=False)
            loss = loss_fn(z, sldj)
            loss_meter.update(loss.item(), x.size(0))
            loss.backward()
            util.clip_grad_norm(optimizer, max_grad_norm)
            optimizer.step()

            progress_bar.set_postfix(loss=loss_meter.avg,
                                     bpd=util.bits_per_dim(x, loss_meter.avg))
            progress_bar.update(x.size(0)) 
開發者ID:chrischute,項目名稱:real-nvp,代碼行數:20,代碼來源:train.py

示例2: train

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def train(epoch, net, trainloader, device, optimizer, scheduler, loss_fn, max_grad_norm):
    global global_step
    print('\nEpoch: %d' % epoch)
    net.train()
    loss_meter = util.AverageMeter()
    with tqdm(total=len(trainloader.dataset)) as progress_bar:
        for x, _ in trainloader:
            x = x.to(device)
            optimizer.zero_grad()
            z, sldj = net(x, reverse=False)
            loss = loss_fn(z, sldj)
            loss_meter.update(loss.item(), x.size(0))
            loss.backward()
            if max_grad_norm > 0:
                util.clip_grad_norm(optimizer, max_grad_norm)
            optimizer.step()
            scheduler.step(global_step)

            progress_bar.set_postfix(nll=loss_meter.avg,
                                     bpd=util.bits_per_dim(x, loss_meter.avg),
                                     lr=optimizer.param_groups[0]['lr'])
            progress_bar.update(x.size(0))
            global_step += x.size(0) 
開發者ID:chrischute,項目名稱:glow,代碼行數:25,代碼來源:train.py

示例3: test

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def test(epoch, net, testloader, device, loss_fn, num_samples):
    global best_loss
    net.eval()
    loss_meter = util.AverageMeter()
    with torch.no_grad():
        with tqdm(total=len(testloader.dataset)) as progress_bar:
            for x, _ in testloader:
                x = x.to(device)
                z, sldj = net(x, reverse=False)
                loss = loss_fn(z, sldj)
                loss_meter.update(loss.item(), x.size(0))
                progress_bar.set_postfix(loss=loss_meter.avg,
                                         bpd=util.bits_per_dim(x, loss_meter.avg))
                progress_bar.update(x.size(0))

    # Save checkpoint
    if loss_meter.avg < best_loss:
        print('Saving...')
        state = {
            'net': net.state_dict(),
            'test_loss': loss_meter.avg,
            'epoch': epoch,
        }
        os.makedirs('ckpts', exist_ok=True)
        torch.save(state, 'ckpts/best.pth.tar')
        best_loss = loss_meter.avg

    # Save samples and data
    images = sample(net, num_samples, device)
    os.makedirs('samples', exist_ok=True)
    images_concat = torchvision.utils.make_grid(images, nrow=int(num_samples ** 0.5), padding=2, pad_value=255)
    torchvision.utils.save_image(images_concat, 'samples/epoch_{}.png'.format(epoch)) 
開發者ID:chrischute,項目名稱:real-nvp,代碼行數:34,代碼來源:train.py

示例4: validate

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def validate(data_loader, model, criterion, epoch, monitors, args):
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    batch_time = AverageMeter()

    total_sample = len(data_loader.sampler)
    batch_size = data_loader.batch_size
    steps_per_epoch = math.ceil(total_sample / batch_size)

    logger.info('Validation: %d samples (%d per mini-batch)', total_sample, batch_size)

    model.eval()
    end_time = time.time()
    for batch_idx, (inputs, targets) in enumerate(data_loader):
        with t.no_grad():
            inputs = inputs.to(args.device.type)
            targets = targets.to(args.device.type)

            outputs = model(inputs)
            loss = criterion(outputs, targets)

            acc1, acc5 = accuracy(outputs.data, targets.data, topk=(1, 5))
            losses.update(loss.item(), inputs.size(0))
            top1.update(acc1.item(), inputs.size(0))
            top5.update(acc5.item(), inputs.size(0))
            batch_time.update(time.time() - end_time)
            end_time = time.time()

            if (batch_idx + 1) % args.log.print_freq == 0:
                for m in monitors:
                    m.update(epoch, batch_idx + 1, steps_per_epoch, 'Validation', {
                        'Loss': losses,
                        'Top1': top1,
                        'Top5': top5,
                        'BatchTime': batch_time
                    })

    logger.info('==> Top1: %.3f    Top5: %.3f    Loss: %.3f\n', top1.avg, top5.avg, losses.avg)
    return top1.avg, top5.avg, losses.avg 
開發者ID:zhutmost,項目名稱:lsq-net,代碼行數:42,代碼來源:process.py

示例5: test

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def test(epoch, net, testloader, device, loss_fn, num_samples):
    global best_loss
    net.eval()
    loss_meter = util.AverageMeter()
    with tqdm(total=len(testloader.dataset)) as progress_bar:
        for x, _ in testloader:
            x = x.to(device)
            z, sldj = net(x, reverse=False)
            loss = loss_fn(z, sldj)
            loss_meter.update(loss.item(), x.size(0))
            progress_bar.set_postfix(nll=loss_meter.avg,
                                     bpd=util.bits_per_dim(x, loss_meter.avg))
            progress_bar.update(x.size(0))

    # Save checkpoint
    if loss_meter.avg < best_loss:
        print('Saving...')
        state = {
            'net': net.state_dict(),
            'test_loss': loss_meter.avg,
            'epoch': epoch,
        }
        os.makedirs('ckpts', exist_ok=True)
        torch.save(state, 'ckpts/best.pth.tar')
        best_loss = loss_meter.avg

    # Save samples and data
    images = sample(net, num_samples, device)
    os.makedirs('samples', exist_ok=True)
    images_concat = torchvision.utils.make_grid(images, nrow=int(num_samples ** 0.5), padding=2, pad_value=255)
    torchvision.utils.save_image(images_concat, 'samples/epoch_{}.png'.format(epoch)) 
開發者ID:chrischute,項目名稱:glow,代碼行數:33,代碼來源:train.py

示例6: validate

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def validate(val_loader, model, epoch, output_writers):
    global args

    batch_time = AverageMeter()
    flow2_EPEs = AverageMeter()

    # switch to evaluate mode
    model.eval()

    end = time.time()
    for i, (input, target) in enumerate(val_loader):
        target = target.to(device)
        input = torch.cat(input,1).to(device)

        # compute output
        output = model(input)
        flow2_EPE = args.div_flow*realEPE(output, target, sparse=args.sparse)
        # record EPE
        flow2_EPEs.update(flow2_EPE.item(), target.size(0))

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i < len(output_writers):  # log first output of first batches
            if epoch == 0:
                mean_values = torch.tensor([0.45,0.432,0.411], dtype=input.dtype).view(3,1,1)
                output_writers[i].add_image('GroundTruth', flow2rgb(args.div_flow * target[0], max_value=10), 0)
                output_writers[i].add_image('Inputs', (input[0,:3].cpu() + mean_values).clamp(0,1), 0)
                output_writers[i].add_image('Inputs', (input[0,3:].cpu() + mean_values).clamp(0,1), 1)
            output_writers[i].add_image('FlowNet Outputs', flow2rgb(args.div_flow * output[0], max_value=10), epoch)

        if i % args.print_freq == 0:
            print('Test: [{0}/{1}]\t Time {2}\t EPE {3}'
                  .format(i, len(val_loader), batch_time, flow2_EPEs))

    print(' * EPE {:.3f}'.format(flow2_EPEs.avg))

    return flow2_EPEs.avg 
開發者ID:ClementPinard,項目名稱:FlowNetPytorch,代碼行數:41,代碼來源:main.py

示例7: train

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def train(train_loader, model, criterion, optimizer, lr_scheduler, epoch, monitors, args):
    losses = AverageMeter()
    top1 = AverageMeter()
    top5 = AverageMeter()
    batch_time = AverageMeter()

    total_sample = len(train_loader.sampler)
    batch_size = train_loader.batch_size
    steps_per_epoch = math.ceil(total_sample / batch_size)
    logger.info('Training: %d samples (%d per mini-batch)', total_sample, batch_size)

    model.train()
    end_time = time.time()
    for batch_idx, (inputs, targets) in enumerate(train_loader):
        inputs = inputs.to(args.device.type)
        targets = targets.to(args.device.type)

        outputs = model(inputs)
        loss = criterion(outputs, targets)

        acc1, acc5 = accuracy(outputs.data, targets.data, topk=(1, 5))
        losses.update(loss.item(), inputs.size(0))
        top1.update(acc1.item(), inputs.size(0))
        top5.update(acc5.item(), inputs.size(0))

        if lr_scheduler is not None:
            lr_scheduler.step(epoch=epoch, batch=batch_idx)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        batch_time.update(time.time() - end_time)
        end_time = time.time()

        if (batch_idx + 1) % args.log.print_freq == 0:
            for m in monitors:
                m.update(epoch, batch_idx + 1, steps_per_epoch, 'Training', {
                    'Loss': losses,
                    'Top1': top1,
                    'Top5': top5,
                    'BatchTime': batch_time,
                    'LR': optimizer.param_groups[0]['lr']
                })

    logger.info('==> Top1: %.3f    Top5: %.3f    Loss: %.3f\n',
                top1.avg, top5.avg, losses.avg)
    return top1.avg, top5.avg, losses.avg 
開發者ID:zhutmost,項目名稱:lsq-net,代碼行數:50,代碼來源:process.py

示例8: evaluate

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def evaluate(model, data_loader, device, eval_file, max_len, use_squad_v2):
    nll_meter = util.AverageMeter()

    model.eval()
    pred_dict = {}
    with open(eval_file, 'r') as fh:
        gold_dict = json_load(fh)
    with torch.no_grad(), \
            tqdm(total=len(data_loader.dataset)) as progress_bar:
        for cw_idxs, cc_idxs, qw_idxs, qc_idxs, y1, y2, ids in data_loader:
            # Setup for forward
            cw_idxs = cw_idxs.to(device)
            qw_idxs = qw_idxs.to(device)
            batch_size = cw_idxs.size(0)

            # Forward
            log_p1, log_p2 = model(cw_idxs, qw_idxs)
            y1, y2 = y1.to(device), y2.to(device)
            loss = F.nll_loss(log_p1, y1) + F.nll_loss(log_p2, y2)
            nll_meter.update(loss.item(), batch_size)

            # Get F1 and EM scores
            p1, p2 = log_p1.exp(), log_p2.exp()
            starts, ends = util.discretize(p1, p2, max_len, use_squad_v2)

            # Log info
            progress_bar.update(batch_size)
            progress_bar.set_postfix(NLL=nll_meter.avg)

            preds, _ = util.convert_tokens(gold_dict,
                                           ids.tolist(),
                                           starts.tolist(),
                                           ends.tolist(),
                                           use_squad_v2)
            pred_dict.update(preds)

    model.train()

    results = util.eval_dicts(gold_dict, pred_dict, use_squad_v2)
    results_list = [('NLL', nll_meter.avg),
                    ('F1', results['F1']),
                    ('EM', results['EM'])]
    if use_squad_v2:
        results_list.append(('AvNA', results['AvNA']))
    results = OrderedDict(results_list)

    return results, pred_dict 
開發者ID:chrischute,項目名稱:squad,代碼行數:49,代碼來源:train.py

示例9: train

# 需要導入模塊: import util [as 別名]
# 或者: from util import AverageMeter [as 別名]
def train(train_loader, model, optimizer, epoch, train_writer):
    global n_iter, args
    batch_time = AverageMeter()
    data_time = AverageMeter()
    losses = AverageMeter()
    flow2_EPEs = AverageMeter()

    epoch_size = len(train_loader) if args.epoch_size == 0 else min(len(train_loader), args.epoch_size)

    # switch to train mode
    model.train()

    end = time.time()

    for i, (input, target) in enumerate(train_loader):
        # measure data loading time
        data_time.update(time.time() - end)
        target = target.to(device)
        input = torch.cat(input,1).to(device)

        # compute output
        output = model(input)
        if args.sparse:
            # Since Target pooling is not very precise when sparse,
            # take the highest resolution prediction and upsample it instead of downsampling target
            h, w = target.size()[-2:]
            output = [F.interpolate(output[0], (h,w)), *output[1:]]

        loss = multiscaleEPE(output, target, weights=args.multiscale_weights, sparse=args.sparse)
        flow2_EPE = args.div_flow * realEPE(output[0], target, sparse=args.sparse)
        # record loss and EPE
        losses.update(loss.item(), target.size(0))
        train_writer.add_scalar('train_loss', loss.item(), n_iter)
        flow2_EPEs.update(flow2_EPE.item(), target.size(0))

        # compute gradient and do optimization step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        if i % args.print_freq == 0:
            print('Epoch: [{0}][{1}/{2}]\t Time {3}\t Data {4}\t Loss {5}\t EPE {6}'
                  .format(epoch, i, epoch_size, batch_time,
                          data_time, losses, flow2_EPEs))
        n_iter += 1
        if i >= epoch_size:
            break

    return losses.avg, flow2_EPEs.avg 
開發者ID:ClementPinard,項目名稱:FlowNetPytorch,代碼行數:55,代碼來源:main.py


注:本文中的util.AverageMeter方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。