本文整理匯總了Python中tvm.var方法的典型用法代碼示例。如果您正苦於以下問題:Python tvm.var方法的具體用法?Python tvm.var怎麽用?Python tvm.var使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tvm
的用法示例。
在下文中一共展示了tvm.var方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: get_tvm_add
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def get_tvm_add():
# define compute
n = tvm.var('n')
A = tvm.placeholder(n, name='A', dtype='float32')
B = tvm.placeholder(n, name='B', dtype='float32')
C = tvm.compute((n,), lambda i: A[i] + B[i], name='C')
# build function (with parallel support)
with tvm.target.create('llvm'):
s = topi.generic.schedule_injective([C])
func_cpu = tvm.build(s, [A, B, C])
if mobula.utils.list_gpus():
with tvm.target.create('cuda'):
s = topi.generic.schedule_injective([C])
func_gpu = tvm.build(s, [A, B, C])
else:
func_gpu = None
return func_cpu, func_gpu
示例2: test_add
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_add(target_dir):
if not tvm.module.enabled("cuda"):
print("skip %s because cuda is not enabled..." % __file__)
return
n = tvm.var("n")
A = tvm.placeholder((n,), name='A')
B = tvm.placeholder((n,), name='B')
C = tvm.compute(A.shape, lambda i: A[i] + B[i], name="C")
s = tvm.create_schedule(C.op)
bx, tx = s[C].split(C.op.axis[0], factor=64)
s[C].bind(bx, tvm.thread_axis("blockIdx.x"))
s[C].bind(tx, tvm.thread_axis("threadIdx.x"))
fadd_cuda = tvm.build(s, [A, B, C], "cuda", target_host="llvm", name="myadd")
fadd_cuda.save(os.path.join(target_dir, "add_gpu.o"))
fadd_cuda.imported_modules[0].save(os.path.join(target_dir, "add_gpu.ptx"))
cc.create_shared(os.path.join(target_dir, "add_gpu.so"),
[os.path.join(target_dir, "add_gpu.o")])
示例3: test_canonical
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_canonical():
x = tvm.var("x")
z = tvm.const(3)
ret = tvm.ir_pass.CanonicalSimplify(x / (z*z) - x / (z*z))
assert(tvm.ir_pass.Equal(ret, 0))
ret = tvm.ir_pass.CanonicalSimplify(x / (z+z) - x / (z+z))
assert(tvm.ir_pass.Equal(ret, 0))
#make sure terms are ordered based on their top operators (e.g., / always precedes %)
ret1 = tvm.ir_pass.CanonicalSimplify(x % 3 + x / 3)
ret2 = tvm.ir_pass.CanonicalSimplify(x / 3 + x % 3)
assert(tvm.ir_pass.Equal(ret1, ret2))
#when top operators match, compare string representation of terms
ret1 = tvm.ir_pass.CanonicalSimplify(x % 4 + x % 3)
ret2 = tvm.ir_pass.CanonicalSimplify(x % 3 + x % 4)
assert (tvm.ir_pass.Equal(ret1, ret2))
示例4: test_verify_memory_all_bind
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_verify_memory_all_bind():
n = tvm.var("n")
A = tvm.placeholder((n,), name='A')
B = tvm.compute(A.shape, lambda i: A[i] + 1.0, name="B")
# B is bound to threads.
s = tvm.create_schedule(B.op)
bx, tx = s[B].split(B.op.axis[0], factor=64)
s[B].bind(bx, tvm.thread_axis("blockIdx.x"))
s[B].bind(tx, tvm.thread_axis("threadIdx.x"))
func = lower(s, [A, B])
for dev_type in gpu_devices + other_devices:
assert tvm.ir_pass.VerifyMemory(func, dev_type)
# Computations are not bound.
# So VerifyMemory pass fails when device type is GPU.
#
示例5: test_verify_memory_not_bind
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_verify_memory_not_bind():
n = tvm.var("n")
A = tvm.placeholder((n,), name='A')
B = tvm.compute(A.shape, lambda i: A[i] + 1.0, name="B")
# B is not bound to threads.
s = tvm.create_schedule(B.op)
func = lower(s, [A, B])
for dev_type in gpu_devices:
assert not tvm.ir_pass.VerifyMemory(func, dev_type)
for dev_type in other_devices:
assert tvm.ir_pass.VerifyMemory(func, dev_type)
# Computations are partially bound.
# So VerifyMemory pass fails when device type is GPU.
#
示例6: test_bound3
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_bound3():
m = tvm.var('m')
l = tvm.var('l')
A = tvm.placeholder((m, l), name='A')
A1 = tvm.compute((m, l), lambda i, j: A[i, j], name='A1')
A2 = tvm.compute((m, l), lambda i, j: A1[i, j] + 3, name='A2')
s = tvm.create_schedule(A2.op)
s[A1].set_scope("shared")
xo, xi = s[A2].split(A2.op.axis[0], 32)
xi0, xi1 = s[A2].split(xi, nparts=16)
s[A2].bind(xi0, tvm.thread_axis("threadIdx.x"))
yo, yi = s[A2].split(A2.op.axis[1], 16)
# test normalize not affecting schedule
_ = s.normalize()
s[A2].reorder(xo, xi0, yo, xi1, yi)
s[A1].compute_at(s[A2], yo)
bounds = tvm.schedule.InferBound(s)
assert isinstance(bounds, tvm.container.Map)
assert(bounds[A1.op.axis[0]].extent.value==32)
assert(bounds[A1.op.axis[1]].extent.value==16)
示例7: test_bound_warp
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_bound_warp():
m = tvm.var('m')
l = tvm.var('l')
A = tvm.placeholder((m, l), name='A')
A1 = tvm.compute((m, l), lambda i, j: A[i, j], name='A1')
A2 = tvm.compute((m, l), lambda i, j: A1[i, j] + 3, name='A2')
s = tvm.create_schedule(A2.op)
s[A1].set_scope("warp")
xo, xi = s[A2].split(A2.op.axis[0], 32)
xi0, xi1 = s[A2].split(xi, factor=16)
tx = tvm.thread_axis("threadIdx.x")
s[A2].bind(xi1, tx)
s[A2].bind(xi0, tvm.thread_axis("threadIdx.y"))
y = s[A2].op.axis[1]
s[A1].compute_at(s[A2], y)
xo, xi = s[A1].split(s[A1].op.axis[0], factor=16)
s[A1].bind(xi, tx)
bounds = tvm.schedule.InferBound(s)
assert isinstance(bounds, tvm.container.Map)
assert(bounds[A1.op.axis[0]].extent.value==16)
示例8: test_bound_scan
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_bound_scan():
m = tvm.var("m")
n = tvm.var("n")
X = tvm.compute((m, n), lambda i, j: tvm.const(1, "float32"), name="x")
s_state = tvm.placeholder((m, n))
s_init = tvm.compute((1, n), lambda _, i: X[0, i])
s_update = tvm.compute((m, n), lambda t, i: s_state[t-1, i] + X[t, i])
s_scan = tvm.scan(s_init, s_update, s_state)
assert tuple(s_scan.shape) == (m, n)
s = tvm.create_schedule(s_scan.op)
XX = s.cache_read(X, "local", s_update)
xo, xi = s[s_update].split(s_update.op.axis[1], factor=4)
s[XX].compute_at(s[s_update], xo)
s = s.normalize()
bounds = tvm.schedule.InferBound(s)
stmt = tvm.schedule.ScheduleOps(s, bounds)
assert bounds[XX.op.axis[1]].extent.value == 4
示例9: test_bound_nest_group
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_bound_nest_group():
m = tvm.var("m")
n = tvm.var("n")
x = tvm.compute((m, n), lambda i, j: tvm.const(1, "float32"), name="x")
x1 = tvm.compute(x.shape, lambda *i: x(*i) + 1, name="x1")
x2 = tvm.compute(x.shape, lambda *i: x1(*i) + 2, name="x2")
s = tvm.create_schedule(x2.op)
g1 = s.create_group(outputs=x, inputs=x, include_inputs=True)
g2 = s.create_group(outputs=x1, inputs=x, include_inputs=True)
assert s[x].group == g1
assert s[x1].group == g2
g2.compute_at(s[x2], x2.op.axis[0])
g1.compute_at(s[x1], s[x1].op.axis[1])
s = s.normalize()
bounds = tvm.schedule.InferBound(s)
assert bounds[x.op.axis[0]].extent.value == 1
assert bounds[x.op.axis[1]].extent.value == 1
assert bounds[x1.op.axis[0]].extent.value == 1
assert bounds[x1.op.axis[1]].extent == n
示例10: test_bound_nest_thread
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_bound_nest_thread():
m = tvm.var('m')
A = tvm.placeholder((m), name='A')
A1 = tvm.compute((m,), lambda i: A[i], name='A1')
A2 = tvm.compute((m,), lambda i: A1[i] + 2, name='A2')
A3 = tvm.compute((m,), lambda i: A2[i] + 3, name='A3')
s = tvm.create_schedule(A3.op)
s[A2].set_scope("shared")
s[A1].set_scope("local")
block_x = tvm.thread_axis("blockIdx.x")
thread_x = tvm.thread_axis("threadIdx.x")
bx, tx = s[A3].split(A3.op.axis[0], factor=32)
s[A3].bind(bx, block_x)
s[A3].bind(tx, thread_x)
s[A2].compute_at(s[A3], tx)
_, xi = s[A2].split(A2.op.axis[0], nparts=1)
s[A2].bind(xi, thread_x)
s[A1].compute_at(s[A3], tx)
s = s.normalize()
bounds = tvm.schedule.InferBound(s)
assert(bounds[A1.op.axis[0]].extent.value==1)
assert(bounds[A2.op.axis[0]].extent.value==32)
assert(bounds[A3.op.axis[0]].extent == m)
示例11: test_buffer_access_ptr_offset
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_buffer_access_ptr_offset():
m = tvm.var('m')
n = tvm.var('n')
Ab = tvm.decl_buffer((m, n), tvm.float32)
aptr = Ab.access_ptr("rw", offset=100)
offset = tvm.ir_pass.Simplify(aptr.args[2])
assert tvm.ir_pass.Equal(offset, 100)
assert aptr.args[4].value == Buffer.READ | Buffer.WRITE
v = tvm.var('int32')
aptr = Ab.access_ptr("rw", offset=100 + 100 + v)
offset = tvm.ir_pass.Simplify(aptr.args[2])
assert tvm.ir_pass.Equal(offset, 200 + v)
assert aptr.args[4].value == Buffer.READ | Buffer.WRITE
aptr = Ab.access_ptr("rw", offset=tvm.call_extern('int32', "test_call", 100 + 100 + v))
offset = tvm.ir_pass.Simplify(aptr.args[2])
assert tvm.ir_pass.Equal(offset, tvm.call_extern('int32', "test_call", 200 + v))
assert aptr.args[4].value == Buffer.READ | Buffer.WRITE
示例12: test_makeapi
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_makeapi():
"""Not yet working, mock design"""
n = tvm.var('n')
A = tvm.placeholder((n,), name='A')
B = tvm.placeholder((n,), name='B')
C = tvm.compute(A.shape, lambda *i: A(*i) + B(*i), name='C')
s = tvm.create_schedule(C.op)
bounds = tvm.schedule.InferBound(s)
stmt = tvm.schedule.ScheduleOps(s, bounds)
Ab = tvm.decl_buffer(A.shape, A.dtype, name='A')
Bb = tvm.decl_buffer(B.shape, B.dtype, name='B')
Cb = tvm.decl_buffer(C.shape, C.dtype, name='C')
stmt = tvm.ir_pass.StorageFlatten(stmt, {A: Ab, B:Bb, C:Cb}, 64)
num_unpacked_args = 2
f = tvm.ir_pass.MakeAPI(
stmt, "myadd", [n, Ab, Bb, Cb], num_unpacked_args, True)
assert(f.handle_data_type[Ab.data].dtype == Ab.dtype)
assert(len(f.args) == 5)
output_ssa = False
示例13: test_vectorize_loop
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_vectorize_loop():
dtype = 'int64'
n = tvm.var('n')
ib = tvm.ir_builder.create()
A = ib.pointer("float32", name="A")
with ib.for_range(0, n) as i:
with ib.for_range(0, 4, for_type="vectorize") as j:
A[j] = tvm.const(1, A.dtype)
stmt = ib.get()
assert isinstance(stmt.body, tvm.stmt.For)
stmt = tvm.ir_pass.VectorizeLoop(stmt)
assert isinstance(stmt, tvm.stmt.For)
assert not isinstance(stmt.body, tvm.stmt.For)
assert isinstance(stmt.body.index, tvm.expr.Ramp)
assert isinstance(stmt.body.value, tvm.expr.Broadcast)
示例14: test_vectorize_with_if
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_vectorize_with_if():
n = tvm.var('n')
x = tvm.var('x')
ib = tvm.ir_builder.create()
A = ib.pointer("float32", name="A")
with ib.for_range(0, 4, for_type="vectorize") as i:
with ib.if_scope(x < n):
A[i] = A[i] + 1
with ib.else_scope():
with ib.if_scope(i < n):
A[i] = 2.0
stmt = ib.get()
stmt = tvm.ir_pass.VectorizeLoop(stmt)
assert isinstance(stmt, tvm.stmt.IfThenElse)
assert isinstance(stmt.then_case.index, tvm.expr.Ramp)
assert isinstance(stmt.then_case.value, tvm.expr.Add)
assert stmt.then_case.value.dtype == "float32x4"
assert isinstance(stmt.else_case, tvm.stmt.For)
示例15: test_basic
# 需要導入模塊: import tvm [as 別名]
# 或者: from tvm import var [as 別名]
def test_basic():
a = tvm.var("a")
b = tvm.var("b")
m = tvm.arith.DetectLinearEquation(a * 4 + b * 6 + 7, [a])
assert m[0].value == 4
assert tvm.ir_pass.Simplify(m[1] - (b * 6 + 7)).value == 0
m = tvm.arith.DetectLinearEquation(a * 4 * (a+1) + b * 6 + 7, [a])
assert len(m) == 0
m = tvm.arith.DetectLinearEquation(a * 4 + (a+1) + b * 6 + 7, [a])
assert m[0].value == 5
assert tvm.ir_pass.Simplify(m[1] - (b * 6 + 7 + 1)).value == 0
m = tvm.arith.DetectLinearEquation(a * b + 7, [a])
assert m[0] == b
m = tvm.arith.DetectLinearEquation(b * 7, [a])
assert m[0].value == 0