本文整理匯總了Python中torch.triu方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.triu方法的具體用法?Python torch.triu怎麽用?Python torch.triu使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch
的用法示例。
在下文中一共展示了torch.triu方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: find_max_triples
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def find_max_triples(p1, p2, topN=5, prob_thd=None):
""" Find a list of (k1, k2) where k1 >= k2 with the maximum values of p1[k1] * p2[k2]
Args:
p1 (torch.CudaTensor): (N, L) batched start_idx probabilities
p2 (torch.CudaTensor): (N, L) batched end_idx probabilities
topN (int): return topN pairs with highest values
prob_thd (float):
Returns:
batched_sorted_triple: N * [(st_idx, ed_idx, confidence), ...]
"""
product = torch.bmm(p1.unsqueeze(2), p2.unsqueeze(1)) # (N, L, L), end_idx >= start_idx
upper_product = torch.stack([torch.triu(p) for p in product]
).data.cpu().numpy() # (N, L, L) the lower part becomes zeros
batched_sorted_triple = []
for idx, e in enumerate(upper_product):
sorted_triple = topN_array_2d(e, topN=topN)
if prob_thd is not None:
sorted_triple = [t for t in sorted_triple if t[2] >= prob_thd]
batched_sorted_triple.append(sorted_triple)
return batched_sorted_triple
示例2: test_total_mask_random
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def test_total_mask_random(self):
features = 10
hidden_features = 50
num_blocks = 5
output_multiplier = 1
model = made.MADE(
features=features,
hidden_features=hidden_features,
num_blocks=num_blocks,
output_multiplier=output_multiplier,
use_residual_blocks=False,
random_mask=True,
)
total_mask = model.initial_layer.mask
for block in model.blocks:
self.assertIsInstance(block, made.MaskedFeedforwardBlock)
total_mask = block.linear.mask @ total_mask
total_mask = model.final_layer.mask @ total_mask
total_mask = (total_mask > 0).float()
self.assertEqual(torch.triu(total_mask), torch.zeros([features, features]))
示例3: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def forward(self, input, encoder_output, mask_encoder):
# input (b_s, seq_len)
b_s, seq_len = input.shape[:2]
mask_queries = (input != self.padding_idx).unsqueeze(-1).float() # (b_s, seq_len, 1)
mask_self_attention = torch.triu(torch.ones((seq_len, seq_len), dtype=torch.uint8, device=input.device),
diagonal=1)
mask_self_attention = mask_self_attention.unsqueeze(0).unsqueeze(0) # (1, 1, seq_len, seq_len)
mask_self_attention = mask_self_attention + (input == self.padding_idx).unsqueeze(1).unsqueeze(1).byte()
mask_self_attention = mask_self_attention.gt(0) # (b_s, 1, seq_len, seq_len)
if self._is_stateful:
self.running_mask_self_attention = torch.cat([self.running_mask_self_attention, mask_self_attention], -1)
mask_self_attention = self.running_mask_self_attention
seq = torch.arange(1, seq_len + 1).view(1, -1).expand(b_s, -1).to(input.device) # (b_s, seq_len)
seq = seq.masked_fill(mask_queries.squeeze(-1) == 0, 0)
if self._is_stateful:
self.running_seq.add_(1)
seq = self.running_seq
out = self.word_emb(input) + self.pos_emb(seq)
for i, l in enumerate(self.layers):
out = l(out, encoder_output, mask_queries, mask_self_attention, mask_encoder)
out = self.fc(out)
return F.log_softmax(out, dim=-1)
示例4: comp
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def comp(self, inpu):
in_mat1 = torch.triu(inpu.repeat(inpu.size(0), 1), diagonal=1)
in_mat2 = torch.triu(inpu.repeat(inpu.size(0), 1).t(), diagonal=1)
comp_first = (in_mat1 - in_mat2)
comp_second = (in_mat2 - in_mat1)
std1 = torch.std(comp_first).item()
std2 = torch.std(comp_second).item()
comp_first = torch.sigmoid(comp_first * (6.8 / std1))
comp_second = torch.sigmoid(comp_second * (6.8 / std2))
comp_first = torch.triu(comp_first, diagonal=1)
comp_second = torch.triu(comp_second, diagonal=1)
return (torch.sum(comp_first, 1) + torch.sum(comp_second, 0) + 1) / inpu.size(0)
示例5: buffered_future_mask
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def buffered_future_mask(self, tensor):
"""attend all surounding words except itself
[[0, -inf, 0]
[0, 0, -inf]
[0, 0, 0]]
The attention map is not ture diagonal since we predict y_{t+1} at time-step t
"""
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
self._future_mask = torch.tril(self._future_mask, 1)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
)
self._future_mask = torch.tril(self._future_mask, 1)
return self._future_mask[:dim, :dim]
示例6: _generate_future_mask
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def _generate_future_mask(
self, size: int, dtype: torch.dtype, device: torch.device
) -> torch.Tensor:
r"""
Generate a mask for "future" positions, useful when using this module
for language modeling.
Parameters
----------
size: int
"""
# Default mask is for forward direction. Flip for backward direction.
mask = torch.triu(
torch.ones(size, size, device=device, dtype=dtype), diagonal=1
)
mask = mask.masked_fill(mask == 1, float("-inf"))
return mask
示例7: triu
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def triu(m, k=0):
"""
Returns the upper triangular part of the tensor, the other elements of the result tensor are set to 0.
The upper triangular part of the tensor is defined as the elements on and below the diagonal.
The argument k controls which diagonal to consider. If k=0, all elements on and below the main diagonal are
retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative
value excludes just as many diagonals below the main diagonal.
Parameters
----------
m : ht.DNDarray
Input tensor for which to compute the upper triangle.
k : int, optional
Diagonal above which to zero elements. k=0 (default) is the main diagonal, k<0 is below and k>0 is above.
Returns
-------
upper_triangle : ht.DNDarray
Upper triangle of the input tensor.
"""
return __tri_op(m, k, torch.triu)
示例8: log_ranking_prob_Bradley_Terry
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def log_ranking_prob_Bradley_Terry(batch_preds):
'''
:param batch_preds: [batch_size, list_size]
:return:
'''
assert 2 == len(batch_preds.size())
max_v = torch.max(batch_preds)
new_batch_preds = torch.exp(batch_preds - max_v)
batch_numerators = torch.unsqueeze(new_batch_preds, dim=2).repeat(1, 1, batch_preds.size(1))
batch_denominaotrs = torch.unsqueeze(new_batch_preds, dim=2) + torch.unsqueeze(new_batch_preds, dim=1)
batch_BT_probs = batch_numerators / batch_denominaotrs
batch_log_ranking_prob = torch.sum(torch.sum(torch.triu(torch.log(batch_BT_probs), diagonal=1), dim=2), dim=1)
return batch_log_ranking_prob
示例9: _prepare_bart_decoder_inputs
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def _prepare_bart_decoder_inputs(
config, input_ids, decoder_input_ids=None, decoder_attn_mask=None,
):
"""Prepare masks that ignore padding tokens decoder and a causal lm mask for the decoder if
none are provided. This mimics the default behavior in fairseq. To override it pass in masks.
"""
pad_token_id = config.pad_token_id
need_causal_mask = not config.output_past
if decoder_input_ids is None:
decoder_input_ids = shift_tokens_right(input_ids, pad_token_id)
bsz, tgt_len = decoder_input_ids.size()[:2]
if decoder_attn_mask is None:
decoder_padding_mask = make_padding_mask(decoder_input_ids, pad_token_id)
if need_causal_mask:
causal_lm_mask = torch.triu(fill_with_neg_inf(torch.zeros(tgt_len, tgt_len)), 1)
else:
causal_lm_mask = None
new_shape = (bsz, tgt_len, tgt_len)
# make it broadcastable so can just be added to the attention coefficients
decoder_attn_mask = _combine_masks(decoder_padding_mask, causal_lm_mask, new_shape).to(device=input_ids.device)
assert decoder_attn_mask is None or decoder_attn_mask.shape == (bsz, 1, tgt_len, tgt_len)
return decoder_input_ids, decoder_attn_mask
示例10: _create_causal_attn_mask
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def _create_causal_attn_mask(self,
seq_len: int,
mem_len: int,
same_length: bool = False) -> torch.Tensor:
r"""Create causal attention mask of shape
`(seq_len, mem_len + seq_len)`.
"""
assert self.r_w_bias is not None
device = self.r_w_bias.device
attn_mask = torch.ones(seq_len, seq_len, device=device)
mask_u = torch.triu(attn_mask, diagonal=1)
attn_mask_pad = torch.zeros(seq_len, mem_len, device=device)
ret = torch.cat([attn_mask_pad, mask_u], dim=1)
if same_length:
mask_l = torch.tril(attn_mask, diagonal=-1)
ret = torch.cat([ret[:, :seq_len] + mask_l, ret[:, seq_len:]], 1)
return ret
示例11: get_subsequent_mask
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def get_subsequent_mask(seq):
''' For masking out the subsequent info. '''
sz_b, len_s = seq.size()
subsequent_mask = torch.triu(
torch.ones((len_s, len_s), device=seq.device, dtype=torch.uint8), diagonal=1)
subsequent_mask = subsequent_mask.unsqueeze(0).expand(sz_b, -1, -1) # b x ls x ls
return subsequent_mask
示例12: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def forward(self, x):
""" x has shape [batch, seq length]"""
padding_mask = (x == self.tokenizer.vocab['[PAD]'])
x = x.transpose(0, 1).contiguous()
positions = torch.arange(len(x), device=x.device).unsqueeze(-1)
h = self.tokens_embeddings(x)
h = h + self.position_embeddings(positions).expand_as(h)
h = self.dropout(h)
attn_mask = None
if self.causal:
attn_mask = torch.full((len(x), len(x)), -float('Inf'), device=h.device, dtype=h.dtype)
attn_mask = torch.triu(attn_mask, diagonal=1)
for layer_norm_1, attention, layer_norm_2, feed_forward in zip(self.layer_norms_1, self.attentions,
self.layer_norms_2, self.feed_forwards):
h = layer_norm_1(h)
x, _ = attention(h, h, h, attn_mask=attn_mask, need_weights=False, key_padding_mask=padding_mask)
x = self.dropout(x)
h = x + h
h = layer_norm_2(h)
x = feed_forward(h)
x = self.dropout(x)
h = x + h
return h
示例13: buffered_mask
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def buffered_mask(self, tensor):
dim = tensor.size(-1)
if self._mask is None:
self._mask = torch.triu(utils.fill_with_neg_inf(tensor.new(dim, dim)), 1)
if self._mask.size(0) < dim:
self._mask = torch.triu(utils.fill_with_neg_inf(self._mask.resize_(dim, dim)), 1)
return self._mask[:dim, :dim]
示例14: buffered_future_mask
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def buffered_future_mask(self, tensor):
dim = tensor.size(0)
if (
not hasattr(self, "_future_mask")
or self._future_mask is None
or self._future_mask.device != tensor.device
):
self._future_mask = torch.triu(
utils.fill_with_neg_inf(tensor.new(dim, dim)), 1
)
if self._future_mask.size(0) < dim:
self._future_mask = torch.triu(
utils.fill_with_neg_inf(self._future_mask.resize_(dim, dim)), 1
)
return self._future_mask[:dim, :dim]
示例15: p_choose
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import triu [as 別名]
def p_choose(self, query, key, key_padding_mask=None, attn_mask=None, incremental_state=None):
"""
query: bsz, tgt_len
key: bsz, src_len
key_padding_mask: bsz, src_len
"""
src_len, bsz, _ = key.size()
tgt_len, bsz, _ = query.size()
p_choose = query.new_ones(bsz, tgt_len, src_len)
p_choose = torch.tril(p_choose, diagonal=self.waitk_lagging - 1)
p_choose = torch.triu(p_choose, diagonal=self.waitk_lagging - 1)
if key_padding_mask is not None and key_padding_mask[:, 0].eq(1).any():
# Left pad source
# add -1 to the end
p_choose = p_choose.masked_fill(key_padding_mask.float().flip(1).unsqueeze(1).bool(), -1)
p_choose = convert_padding_direction(p_choose.view(-1, src_len).long(), padding_idx=-1, right_to_left=True)
p_choose = p_choose.view(bsz, tgt_len, src_len).type_as(query)
# remove -1
p_choose[p_choose.eq(-1)] = 0
# Extend to each head
p_choose = (
p_choose.contiguous().unsqueeze(1)
.expand(-1, self.num_heads, -1, -1).contiguous()
.view(-1, tgt_len, src_len)
)
return p_choose