本文整理匯總了Python中torch.symeig方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.symeig方法的具體用法?Python torch.symeig怎麽用?Python torch.symeig使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch
的用法示例。
在下文中一共展示了torch.symeig方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __expm__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def __expm__(self, matrix, symmetric):
r"""Calculates matrix exponential.
Args:
matrix (Tensor): Matrix to take exponential of.
symmetric (bool): Specifies whether the matrix is symmetric.
:rtype: (:class:`Tensor`)
"""
if symmetric:
e, V = torch.symeig(matrix, eigenvectors=True)
diff_mat = V @ torch.diag(e.exp()) @ V.t()
else:
diff_mat_np = expm(matrix.cpu().numpy())
diff_mat = torch.Tensor(diff_mat_np).to(matrix.device)
return diff_mat
示例2: symsqrt
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def symsqrt(a, cond=None, return_rank=False, dtype=torch.float32):
"""Symmetric square root of a positive semi-definite matrix.
See https://github.com/pytorch/pytorch/issues/25481"""
s, u = torch.symeig(a, eigenvectors=True)
cond_dict = {torch.float32: 1e3 * 1.1920929e-07, torch.float64: 1E6 * 2.220446049250313e-16}
if cond in [None, -1]:
cond = cond_dict[dtype]
above_cutoff = (abs(s) > cond * torch.max(abs(s)))
psigma_diag = torch.sqrt(s[above_cutoff])
u = u[:, above_cutoff]
B = u @ torch.diag(psigma_diag) @ u.t()
if return_rank:
return B, len(psigma_diag)
else:
return B
示例3: lanczos_tridiag_to_diag
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def lanczos_tridiag_to_diag(t_mat):
"""
Given a num_init_vecs x num_batch x k x k tridiagonal matrix t_mat,
returns a num_init_vecs x num_batch x k set of eigenvalues
and a num_init_vecs x num_batch x k x k set of eigenvectors.
TODO: make the eigenvalue computations done in batch mode.
"""
orig_device = t_mat.device
if t_mat.size(-1) < 32:
retr = torch.symeig(t_mat.cpu(), eigenvectors=True)
else:
retr = torch.symeig(t_mat, eigenvectors=True)
evals, evecs = retr
mask = evals.ge(0)
evecs = evecs * mask.type_as(evecs).unsqueeze(-2)
evals = evals.masked_fill_(~mask, 1)
return evals.to(orig_device), evecs.to(orig_device)
示例4: test_forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def test_forward():
torch.manual_seed(42)
N = 100
tol = 1E-8
dtype = torch.float64
A = torch.randn(N, N, dtype=dtype)
A = A+A.t()
w, v = torch.symeig(A, eigenvectors=True)
idx = torch.argmax(w.abs())
v_exact = v[:, idx]
v_exact = v_exact[0].sign() * v_exact
x0 = torch.rand(N, dtype=dtype)
x0 = x0/x0.norm()
x = FixedPoint.apply(A, x0, tol)
assert(torch.allclose(v_exact, x, rtol=tol, atol=tol))
示例5: active_subspace
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def active_subspace(t):
"""
Compute the main variational directions of a tensor.
Reference: P. Constantine et al. `"Discovering an Active Subspace in a Single-Diode Solar Cell Model" (2017) <https://arxiv.org/pdf/1406.7607.pdf>`_
See also P. Constantine's `data set repository <https://github.com/paulcon/as-data-sets/blob/master/README.md>`_.
:param t: input tensor
:return: (eigvals, eigvecs): an array and a matrix, encoding the eigenpairs in descending order
"""
grad = tn.gradient(t, dim='all')
M = torch.zeros(t.dim(), t.dim())
for i in range(t.dim()):
for j in range(i, t.dim()):
M[i, j] = tn.dot(grad[i], grad[j]) / t.size
M[j, i] = M[i, j]
w, v = torch.symeig(M, eigenvectors=True)
idx = range(t.dim()-1, -1, -1)
w = w[idx]
v = v[:, idx]
return w, v
示例6: pca
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def pca(data, components):
"""
Finds the `components` top principal components of the data.
"""
assert components > 0 and components < data.size(1), "incorrect # of PCA dimensions"
# We switch to numpy here as torch.symeig gave strange results.
dtype = data.dtype
data = data.numpy()
data -= np.mean(data, axis=0, keepdims=True)
cov = np.cov(data.T)
L, V = nla.eigh(cov)
return torch.tensor(V[:, -components:], dtype=dtype)
示例7: _update_inv
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def _update_inv(self):
assert self.steps > 0, 'At least one step before update inverse!'
eps = 1e-15
for idx, m in enumerate(self.modules):
# m_aa, m_gg = normalize_factors(self.m_aa[m], self.m_gg[m])
m_aa, m_gg = self.m_aa[m], self.m_gg[m]
self.d_a[m], self.Q_a[m] = torch.symeig(m_aa / self.steps, eigenvectors=True)
self.d_g[m], self.Q_g[m] = torch.symeig(m_gg / self.steps, eigenvectors=True)
self.d_a[m].mul_((self.d_a[m] > eps).float())
self.d_g[m].mul_((self.d_g[m] > eps).float())
self._inversed = True
self.iter += 1
示例8: _update_inv
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def _update_inv(self):
assert self.steps > 0, 'At least one step before update inverse!'
eps = 1e-10
for idx, m in enumerate(self.modules):
m_aa, m_gg = self.m_aa[m], self.m_gg[m]
self.d_a[m], Q_a = torch.symeig(m_aa, eigenvectors=True)
self.d_g[m], Q_g = torch.symeig(m_gg, eigenvectors=True)
self.d_a[m].mul_((self.d_a[m] > eps).float())
self.d_g[m].mul_((self.d_g[m] > eps).float())
# == write summary ==
name = m.__class__.__name__
eigs = (self.d_g[m].view(-1, 1) @ self.d_a[m].view(1, -1)).view(-1).cpu().data.numpy()
self.writer.add_histogram('eigen/%s_%d' % (name, idx), eigs, self.iter)
if self.Q_a.get(m, None) is None:
# print('(%d)Q_a %s is None.' % (idx, m))
self.Q_a[m] = [Q_a] # absorb the eigen basis
else:
# self.Q_a[m] = [Q_a, self.Q_a[m]]
prev_Q_a, prev_Q_g = get_rotation_layer_weights(self.model, m)
prev_Q_a = prev_Q_a.view(prev_Q_a.size(0), prev_Q_a.size(1)).transpose(1, 0)
prev_Q_g = prev_Q_g.view(prev_Q_g.size(0), prev_Q_g.size(1))
self.Q_a[m] = [Q_a, prev_Q_a]
if self.Q_g.get(m, None) is None:
self.Q_g[m] = [Q_g]
else:
self.Q_g[m] = [Q_g, prev_Q_g]
self._inversed = True
self.iter += 1
示例9: test_precond_solve
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def test_precond_solve(self):
seed = 4
torch.random.manual_seed(seed)
tensor = torch.randn(1000, 800)
diag = torch.abs(torch.randn(1000))
standard_lt = AddedDiagLazyTensor(RootLazyTensor(tensor), DiagLazyTensor(diag))
evals, evecs = torch.symeig(standard_lt.evaluate(), eigenvectors=True)
# this preconditioner is a simple example of near deflation
def nonstandard_preconditioner(self):
top_100_evecs = evecs[:, :100]
top_100_evals = evals[:100] + 0.2 * torch.randn(100)
precond_lt = RootLazyTensor(top_100_evecs @ torch.diag(top_100_evals ** 0.5))
logdet = top_100_evals.log().sum()
def precond_closure(rhs):
rhs2 = top_100_evecs.t() @ rhs
return top_100_evecs @ torch.diag(1.0 / top_100_evals) @ rhs2
return precond_closure, precond_lt, logdet
overrode_lt = AddedDiagLazyTensor(
RootLazyTensor(tensor), DiagLazyTensor(diag), preconditioner_override=nonstandard_preconditioner
)
# compute a solve - mostly to make sure that we can actually perform the solve
rhs = torch.randn(1000, 1)
standard_solve = standard_lt.inv_matmul(rhs)
overrode_solve = overrode_lt.inv_matmul(rhs)
# gut checking that our preconditioner is not breaking anything
self.assertEqual(standard_solve.shape, overrode_solve.shape)
self.assertLess(torch.norm(standard_solve - overrode_solve) / standard_solve.norm(), 1.0)
示例10: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def forward(self, A):
w, v = torch.symeig(A, eigenvectors=True)
self.save_for_backward(w, v)
return w, v
示例11: compute_tests
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def compute_tests(genotypes_t, var_thresh=0.99, variant_window=200):
"""determine effective number of independent variants (M_eff)"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# break into windows
windows = torch.split(genotypes_t, variant_window)
if len(windows)>1:
shrunk_cov_t, shrinkage_t = lw_shrink(torch.transpose(torch.stack(windows[:-1]), 1, 2))
n_samples, n_features = windows[0].T.shape
# indices of diagonals
ix = torch.LongTensor(np.array([np.arange(0, n_features**2, n_features+1)+i*n_features**2 for i in range(shrunk_cov_t.shape[0])])).to(device)
shrunk_precision_t = torch.zeros(shrunk_cov_t.shape).to(device)
shrunk_precision_t.view(-1)[ix] = shrunk_cov_t.view(-1)[ix].pow(-0.5)
shrunk_cor_t = torch.matmul(torch.matmul(shrunk_precision_t, shrunk_cov_t), shrunk_precision_t)
eigenvalues_t,_ = torch.symeig(shrunk_cor_t, eigenvectors=False)
# last window
shrunk_cov0_t, shrinkage0_t = lw_shrink(windows[-1].t())
shrunk_precision0_t = torch.diag(torch.diag(shrunk_cov0_t).pow(-0.5))
shrunk_cor0_t = torch.mm(torch.mm(shrunk_precision0_t, shrunk_cov0_t), shrunk_precision0_t)
eigenvalues0_t,_ = torch.symeig(shrunk_cor0_t, eigenvectors=False)
if len(windows)>1:
eigenvalues = list(eigenvalues_t.cpu().numpy())
eigenvalues.append(eigenvalues0_t.cpu().numpy())
else:
eigenvalues = [eigenvalues0_t.cpu().numpy()]
m_eff = 0
for ev,m in zip(eigenvalues, [i.shape[0] for i in windows]):
ev[ev < 0] = 0
m_eff += find_num_eigs(ev, m, var_thresh=var_thresh)
return m_eff
示例12: _compute_kfe
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def _compute_kfe(self, group, state):
"""Computes the covariances."""
mod = group['mod']
x = self.state[group['mod']]['x']
gy = self.state[group['mod']]['gy']
# Computation of xxt
if group['layer_type'] == 'Conv2d':
if not self.sua:
x = F.conv2d(x, group['gathering_filter'],
stride=mod.stride, padding=mod.padding,
groups=mod.in_channels)
x = x.data.permute(1, 0, 2, 3).contiguous().view(x.shape[1], -1)
else:
x = x.data.t()
if mod.bias is not None:
ones = torch.ones_like(x[:1])
x = torch.cat([x, ones], dim=0)
xxt = torch.mm(x, x.t()) / float(x.shape[1])
Ex, state['kfe_x'] = torch.symeig(xxt, eigenvectors=True)
# Computation of ggt
if group['layer_type'] == 'Conv2d':
gy = gy.data.permute(1, 0, 2, 3)
state['num_locations'] = gy.shape[2] * gy.shape[3]
gy = gy.contiguous().view(gy.shape[0], -1)
else:
gy = gy.data.t()
state['num_locations'] = 1
ggt = torch.mm(gy, gy.t()) / float(gy.shape[1])
Eg, state['kfe_gy'] = torch.symeig(ggt, eigenvectors=True)
state['m2'] = Eg.unsqueeze(1) * Ex.unsqueeze(0) * state['num_locations']
if group['layer_type'] == 'Conv2d' and self.sua:
ws = group['params'][0].grad.data.size()
state['m2'] = state['m2'].view(Eg.size(0), Ex.size(0), 1, 1).expand(-1, -1, ws[2], ws[3])
示例13: __init__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def __init__(
self,
mean: Tensor,
cov: Tensor,
seed: Optional[int] = None,
inv_transform: bool = False,
) -> None:
r"""Engine for qMC sampling from a multivariate Normal `N(\mu, \Sigma)`.
Args:
mean: The mean vector.
cov: The covariance matrix.
seed: The seed with which to seed the random number generator of the
underlying SobolEngine.
inv_transform: If True, use inverse transform instead of Box-Muller.
"""
# validate inputs
if not cov.shape[0] == cov.shape[1]:
raise ValueError("Covariance matrix is not square.")
if not mean.shape[0] == cov.shape[0]:
raise ValueError("Dimension mismatch between mean and covariance.")
if not torch.allclose(cov, cov.transpose(-1, -2)):
raise ValueError("Covariance matrix is not symmetric.")
self._mean = mean
self._normal_engine = NormalQMCEngine(
d=mean.shape[0], seed=seed, inv_transform=inv_transform
)
# compute Cholesky decomp; if it fails, do the eigendecomposition
try:
self._corr_matrix = torch.cholesky(cov).transpose(-1, -2)
except RuntimeError:
eigval, eigvec = torch.symeig(cov, eigenvectors=True)
if not torch.all(eigval >= -1e-8):
raise ValueError("Covariance matrix not PSD.")
eigval_root = eigval.clamp_min(0.0).sqrt()
self._corr_matrix = (eigvec * eigval_root).transpose(-1, -2)
示例14: step
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def step(self):
# Add weight decay
if self.weight_decay > 0:
for p in self.model.parameters():
p.grad.data.add_(self.weight_decay, p.data)
updates = {}
for i, m in enumerate(self.modules):
assert len(list(m.parameters())
) == 1, "Can handle only one parameter at the moment"
classname = m.__class__.__name__
p = next(m.parameters())
la = self.damping + self.weight_decay
if self.steps % self.Tf == 0:
# My asynchronous implementation exists, I will add it later.
# Experimenting with different ways to this in PyTorch.
self.d_a[m], self.Q_a[m] = torch.symeig(
self.m_aa[m], eigenvectors=True)
self.d_g[m], self.Q_g[m] = torch.symeig(
self.m_gg[m], eigenvectors=True)
self.d_a[m].mul_((self.d_a[m] > 1e-6).float())
self.d_g[m].mul_((self.d_g[m] > 1e-6).float())
if classname == 'Conv2d':
p_grad_mat = p.grad.data.view(p.grad.data.size(0), -1)
else:
p_grad_mat = p.grad.data
v1 = self.Q_g[m].t() @ p_grad_mat @ self.Q_a[m]
v2 = v1 / (
self.d_g[m].unsqueeze(1) * self.d_a[m].unsqueeze(0) + la)
v = self.Q_g[m] @ v2 @ self.Q_a[m].t()
v = v.view(p.grad.data.size())
updates[p] = v
vg_sum = 0
for p in self.model.parameters():
v = updates[p]
vg_sum += (v * p.grad.data * self.lr * self.lr).sum()
nu = min(1, math.sqrt(self.kl_clip / vg_sum))
for p in self.model.parameters():
v = updates[p]
p.grad.data.copy_(v)
p.grad.data.mul_(nu)
self.optim.step()
self.steps += 1
示例15: GDPPLoss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import symeig [as 別名]
def GDPPLoss(phiFake, phiReal, backward=True):
r"""
Implementation of the GDPP loss. Can be used with any kind of GAN
architecture.
Args:
phiFake (tensor) : last feature layer of the discriminator on real data
phiReal (tensor) : last feature layer of the discriminator on fake data
backward (bool) : should we perform the backward operation ?
Returns:
Loss's value. The backward operation in performed within this operator
"""
def compute_diversity(phi):
phi = F.normalize(phi, p=2, dim=1)
SB = torch.mm(phi, phi.t())
eigVals, eigVecs = torch.symeig(SB, eigenvectors=True)
return eigVals, eigVecs
def normalize_min_max(eigVals):
minV, maxV = torch.min(eigVals), torch.max(eigVals)
if abs(minV - maxV) < 1e-10:
return eigVals
return (eigVals - minV) / (maxV - minV)
fakeEigVals, fakeEigVecs = compute_diversity(phiFake)
realEigVals, realEigVecs = compute_diversity(phiReal)
# Scaling factor to make the two losses operating in comparable ranges.
magnitudeLoss = 0.0001 * F.mse_loss(target=realEigVals, input=fakeEigVals)
structureLoss = -torch.sum(torch.mul(fakeEigVecs, realEigVecs), 0)
normalizedRealEigVals = normalize_min_max(realEigVals)
weightedStructureLoss = torch.sum(
torch.mul(normalizedRealEigVals, structureLoss))
gdppLoss = magnitudeLoss + weightedStructureLoss
if backward:
gdppLoss.backward(retain_graph=True)
return gdppLoss.item()