當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.set_rng_state方法代碼示例

本文整理匯總了Python中torch.set_rng_state方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.set_rng_state方法的具體用法?Python torch.set_rng_state怎麽用?Python torch.set_rng_state使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.set_rng_state方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: seed_all_rng

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def seed_all_rng(seed=None):
    """
    Set the random seed for the RNG in torch, numpy and python.

    Args:
        seed (int): if None, will use a strong random seed.
    """
    if seed is None:
        seed = (
            os.getpid()
            + int(datetime.now().strftime("%S%f"))
            + int.from_bytes(os.urandom(2), "big")
        )
        logger = logging.getLogger(__name__)
        logger.info("Using a generated random seed {}".format(seed))
    np.random.seed(seed)
    torch.set_rng_state(torch.manual_seed(seed).get_state())
    random.seed(seed) 
開發者ID:LikeLy-Journey,項目名稱:SegmenTron,代碼行數:20,代碼來源:env.py

示例2: __getitem__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def __getitem__(self, index):
        """
        Args:
            index (int): Index

        Returns:
            tuple: (image, target) where target is class_index of the target class.
        """
        # create random image that is consistent with the index id
        rng_state = torch.get_rng_state()
        torch.manual_seed(index + self.random_offset)
        img = torch.randn(*self.image_size)
        target = torch.Tensor(1).random_(0, self.num_classes)[0]
        torch.set_rng_state(rng_state)

        # convert to PIL Image
        img = transforms.ToPILImage()(img)
        if self.transform is not None:
            img = self.transform(img)
        if self.target_transform is not None:
            target = self.target_transform(target)

        return img, target 
開發者ID:ZilinGao,項目名稱:Global-Second-order-Pooling-Convolutional-Networks,代碼行數:25,代碼來源:fakedata.py

示例3: restore_rng_states

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def restore_rng_states(device: torch.device,
                       rng_states: Deque[RNGStates],
                       ) -> Generator[None, None, None]:
    """:meth:`Recompute.backward` restores the random number generator states
    captured by :func:`save_rng_states` within its context.

    .. seealso:: :ref:`Referential Transparency`

    """
    cpu_rng_state, gpu_rng_state = rng_states.pop()

    gpu_devices: List[torch.device] = []
    if device.type == 'cuda':
        gpu_devices.append(device)

    with torch.random.fork_rng(gpu_devices):
        torch.set_rng_state(cpu_rng_state)
        if gpu_rng_state is not None:
            torch.cuda.set_rng_state(gpu_rng_state, device)
        yield 
開發者ID:kakaobrain,項目名稱:torchgpipe,代碼行數:22,代碼來源:checkpoint.py

示例4: test_get_set_device_states

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def test_get_set_device_states(device, enabled):
    shape = (1, 1, 10, 10)
    if not torch.cuda.is_available() and device == 'cuda':
        pytest.skip('This test requires a GPU to be available')
    X = torch.ones(shape, device=device)
    devices, states = get_device_states(X)
    assert len(states) == (1 if device == 'cuda' else 0)
    assert len(devices) == (1 if device == 'cuda' else 0)
    cpu_rng_state = torch.get_rng_state()
    Y = X * torch.rand(shape, device=device)
    with torch.random.fork_rng(devices=devices, enabled=True):
        if enabled:
            if device == 'cpu':
                torch.set_rng_state(cpu_rng_state)
            else:
                set_device_states(devices=devices, states=states)
        Y2 = X * torch.rand(shape, device=device)
    assert torch.equal(Y, Y2) == enabled 
開發者ID:silvandeleemput,項目名稱:memcnn,代碼行數:20,代碼來源:test_revop.py

示例5: backward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def backward(ctx, *args):
        if not torch.autograd._is_checkpoint_valid():
            raise RuntimeError("Checkpointing is not compatible with .grad(), please use .backward() if possible")
        inputs = ctx.saved_tensors
        # Stash the surrounding rng state, and mimic the state that was
        # present at this time during forward.  Restore the surrouding state
        # when we're done.
        rng_devices = [torch.cuda.current_device()] if ctx.had_cuda_in_fwd else []
        with torch.random.fork_rng(devices=rng_devices, enabled=preserve_rng_state):
            if preserve_rng_state:
                torch.set_rng_state(ctx.fwd_cpu_rng_state)
                if ctx.had_cuda_in_fwd:
                    torch.cuda.set_rng_state(ctx.fwd_cuda_rng_state)
            detached_inputs = detach_variable(inputs)
            with torch.enable_grad():
                outputs = ctx.run_function(*detached_inputs)

        if isinstance(outputs, torch.Tensor):
            outputs = (outputs,)
        torch.autograd.backward(outputs, args)
        return (None,) + tuple(inp.grad for inp in detached_inputs) 
開發者ID:Lyken17,項目名稱:pytorch-memonger,代碼行數:23,代碼來源:checkpoint.py

示例6: load_states

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def load_states(self, epoch, device):
        """Loads the states from the checkpoint associated with ``epoch``.

        Args:
            epoch (int): ``--epoch`` command argument.
            device (str): ``--device`` command argument.
        """
        checkpoint_data = self.experiment.checkpoint_load(epoch, device)
        if isinstance(self.model, torch.nn.DataParallel):
            self.model.module.load_state_dict(checkpoint_data['model'])
        else:
            self.model.load_state_dict(checkpoint_data['model'])
        self.optimizer.load_state_dict(checkpoint_data['optimizer'])
        random.setstate(checkpoint_data['random_states'][0])
        np.random.set_state(checkpoint_data['random_states'][1])
        torch.set_rng_state(checkpoint_data['random_states'][2].cpu())
        if torch.cuda.is_available() and checkpoint_data['random_states'][3] is not None:
            torch.cuda.set_rng_state(checkpoint_data['random_states'][3].cpu())
        self.counters = checkpoint_data['counters']
        if 'losses' in checkpoint_data:  # Compatibility purposes until next release
            self.losses_epoch = checkpoint_data['losses']
        else:
            self.losses_epoch = checkpoint_data['losses_epoch']
            self.losses_it = checkpoint_data['losses_it']
        self.load_states_others(checkpoint_data) 
開發者ID:davidalvarezdlt,項目名稱:skeltorch,代碼行數:27,代碼來源:runner.py

示例7: seed_all_rng

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def seed_all_rng(seed=None):
    """
    Set the random seed for the RNG in torch, numpy and python.

    Args:
        seed (int): if None, will use a strong random seed.
    """
    if seed is None:
        seed = (
            os.getpid()
            + int(datetime.now().strftime("%S%f"))
            + int.from_bytes(os.urandom(2), "big")
        )
        logger = logging.getLogger(__name__)
        logger.info("Using a generated random seed {}".format(seed))
    np.random.seed(seed)
    torch.set_rng_state(torch.manual_seed(seed).get_state())
    random.seed(seed)


# from https://stackoverflow.com/questions/67631/how-to-import-a-module-given-the-full-path 
開發者ID:facebookresearch,項目名稱:detectron2,代碼行數:23,代碼來源:env.py

示例8: loadSeed

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def loadSeed(loadDir):
    """
    Loads the states and seed saved in a specified path
    
    Inputs:
        loadDir (path): where to look for thee seed to load; it is expected that
            the appropriate file within loadDir is named 'randomSeedUsed.pkl'
    
    Obs.: The file 'randomSeedUsed.pkl' should contain a list structured as
        follows. The length of this list is equal to the number of modules whose
        states were saved (torch, numpy, etc.). Each element in this list is a
        dictionary. The dictionary has three keys: 'module' with the name of 
        the module in string format ('numpy' or 'torch', for example), 'state' 
        with the saved generator state and, if corresponds, 'seed' with the 
        specific seed for the generator (note that torch has both state and 
        seed, but numpy only has state)
    """
    pathToSeed = os.path.join(loadDir, 'randomSeedUsed.pkl')
    with open(pathToSeed, 'rb') as seedFile:
        randomStates = pickle.load(seedFile)
        randomStates = randomStates['randomStates']
    for module in randomStates:
        thisModule = module['module']
        if thisModule == 'numpy':
            np.random.RandomState().set_state(module['state'])
        elif thisModule == 'torch':
            torch.set_rng_state(module['state'])
            torch.manual_seed(module['seed']) 
開發者ID:alelab-upenn,項目名稱:graph-neural-networks,代碼行數:30,代碼來源:miscTools.py

示例9: with_torch_seed

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def with_torch_seed(seed):
    assert isinstance(seed, int)
    rng_state = torch.get_rng_state()
    cuda_rng_state = torch.cuda.get_rng_state()
    set_torch_seed(seed)
    yield
    torch.set_rng_state(rng_state)
    torch.cuda.set_rng_state(cuda_rng_state) 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:10,代碼來源:utils.py

示例10: torch_seed

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def torch_seed(seed: Optional[int]):
    """Context manager which seeds the PyTorch PRNG with the specified seed and
    restores the state afterward. Setting seed to None is equivalent to running
    the code without the context manager."""
    if seed is None:
        yield
        return
    state = torch.get_rng_state()
    torch.manual_seed(seed)
    try:
        yield
    finally:
        torch.set_rng_state(state) 
開發者ID:facebookresearch,項目名稱:ClassyVision,代碼行數:15,代碼來源:util.py

示例11: write_dummy_file

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def write_dummy_file(filename, num_examples, maxlen):
    rng_state = torch.get_rng_state()
    torch.manual_seed(0)
    data = torch.rand(num_examples * maxlen)
    data = 97 + torch.floor(26 * data).int()
    with open(filename, "w") as h:
        offset = 0
        for _ in range(num_examples):
            ex_len = random.randint(1, maxlen)
            ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
            print(ex_str, file=h)
            offset += ex_len
    torch.set_rng_state(rng_state) 
開發者ID:pytorch,項目名稱:translate,代碼行數:15,代碼來源:utils.py

示例12: __exit__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def __exit__(self, type, value, traceback):
        torch.set_rng_state(self.old_rng_state)


# Conditional independence is recorded as a plate context at each site. 
開發者ID:pyro-ppl,項目名稱:funsor,代碼行數:7,代碼來源:minipyro.py

示例13: set_device_states

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def set_device_states(devices, states):
    for device, state in zip(devices, states):
        with torch.cuda.device(device):
            torch.cuda.set_rng_state(state) 
開發者ID:silvandeleemput,項目名稱:memcnn,代碼行數:6,代碼來源:revop.py

示例14: load_rng_state

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def load_rng_state(file_name):
    rng_state = torch_load(file_name)
    torch.set_rng_state(rng_state) 
開發者ID:pkhungurn,項目名稱:talking-head-anime-demo,代碼行數:5,代碼來源:util.py

示例15: setstate

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_rng_state [as 別名]
def setstate(self, state: np.ndarray) -> None:
        return torch.set_rng_state(torch.from_numpy(state)) 
開發者ID:torchvideo,項目名稱:torchvideo,代碼行數:4,代碼來源:__init__.py


注:本文中的torch.set_rng_state方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。