當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.set_printoptions方法代碼示例

本文整理匯總了Python中torch.set_printoptions方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.set_printoptions方法的具體用法?Python torch.set_printoptions怎麽用?Python torch.set_printoptions使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.set_printoptions方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: plot_att_change

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def plot_att_change(batch_doc, network, record, save_img_path, uid='temp',
                    epoch=0, device=torch.device('cpu'), word_alphabet=None, show_net=False, graph_types=['coref']):
    char, word, posi, labels, feats, adjs = [batch_doc[i].to(device) for i in
                                             ["chars", "word_ids", "posi", "ner_ids", "feat_ids", "adjs"]]
    word_txt = []
    if word_alphabet:
        doc = word[0][word[0] != PAD_ID_WORD]
        word_txt = [word_alphabet.get_instance(w) for w in doc]

    adjs_cp = adjs.clone()

    # save adj to file
    print_thres = adjs.size(-1) * adjs.size(-2) + 1000
    torch.set_printoptions(threshold=print_thres)

    # check adj_old, adj_new
    # select = plot_att(adjs_cp, word_txt, record, epoch=epoch)

    network.loss(None, word, char, adjs_cp, labels, show_net=show_net, graph_types=graph_types)
    # plot_att(adjs_cp, word_txt, record, epoch=epoch, select=select) 
開發者ID:thomas0809,項目名稱:GraphIE,代碼行數:22,代碼來源:visual.py

示例2: decide

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def decide(self, prev_output_tokens, encoder_out, context_size):
        torch.set_printoptions(precision=1)
        # source embeddings
        src_emb = encoder_out['ctrl_encoder_out'][:, :context_size]  # B, Ts, ds 
        # target embeddings:
        positions = self.ctrl_embed_positions(
            prev_output_tokens,
            incremental_state=None,
        ) if self.ctrl_embed_positions is not None else None
        # Build the full grid
        tgt_emb = self.embed_scale * self.ctrl_embed_tokens(prev_output_tokens)
        if positions is not None:
            tgt_emb += positions
        tgt_emb = self.embedding_dropout(tgt_emb)
        src_length = src_emb.size(1)
        tgt_length = tgt_emb.size(1)
        # build 2d "image" of embeddings
        src_emb = _expand(src_emb, 1, tgt_length)  # B, Tt, Ts, ds
        tgt_emb = _expand(tgt_emb, 2, src_length)  # B, Tt, Ts, dt
        x = torch.cat((src_emb, tgt_emb), dim=3)   # B, Tt, Ts, C=ds+dt
        obs = self.controller_feat(x)
        controls = self.controller.predict_read_write(obs) 
        pwrite = torch.exp(controls[:,-1,-1,1])
        return pwrite 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:26,代碼來源:double_attn2d_dynamic_ll.py

示例3: decide

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def decide(self, prev_output_tokens, encoder_out, context_size):
        torch.set_printoptions(precision=2)
        # source embeddings
        src_emb = encoder_out['encoder_out'][:, :context_size]  # B, Ts, ds 
        # target embeddings:
        positions = self.embed_positions(
            prev_output_tokens,
            incremental_state=None,
        ) if self.embed_positions is not None else None
        # Build the full grid
        tgt_emb = self.embed_scale * self.embed_tokens(prev_output_tokens)
        if positions is not None:
            tgt_emb += positions
        tgt_emb = self.embedding_dropout(tgt_emb)
        src_length = src_emb.size(1)
        tgt_length = tgt_emb.size(1)
        # build 2d "image" of embeddings
        src_emb = _expand(src_emb, 1, tgt_length)  # B, Tt, Ts, ds
        tgt_emb = _expand(tgt_emb, 2, src_length)  # B, Tt, Ts, dt
        x = torch.cat((src_emb, tgt_emb), dim=3)   # B, Tt, Ts, C=ds+dt
        obs = self.controller_feat(x)
        controls = self.controller.predict_read_write(obs) 
        pwrite = torch.exp(controls[:,-1,-1,1])
        return pwrite 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:26,代碼來源:attn2d_dynamic_ll.py

示例4: decode

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def decode(fn, sound_path, exe_path, scp_path, out_dir):
    """
    Takes a filepath and prints out the corresponding shell command to run that specific
    kaldi configuration. It also calls compliance.kaldi and prints the two outputs.

    Example:
        >> fn = 'fbank-1.1009-2.5985-1.1875-0.8750-5723-true-918-4-0.31-true-false-true-true-' \
            'false-false-false-true-4595-4281-1.0000-hamming.ark'
        >> decode(fn)
    """
    out_fn = out_dir + fn
    fn = fn[len('fbank-'):-len('.ark')]
    arr = [
        'blackman_coeff', 'energy_floor', 'frame_length', 'frame_shift', 'high_freq', 'htk_compat',
        'low_freq', 'num_mel_bins', 'preemphasis_coefficient', 'raw_energy', 'remove_dc_offset',
        'round_to_power_of_two', 'snip_edges', 'subtract_mean', 'use_energy', 'use_log_fbank',
        'use_power', 'vtln_high', 'vtln_low', 'vtln_warp', 'window_type']
    fn_split = fn.split('-')
    assert len(fn_split) == len(arr), ('Len mismatch: %d and %d' % (len(fn_split), len(arr)))
    inputs = {arr[i]: utils.parse(fn_split[i]) for i in range(len(arr))}

    # print flags for C++
    s = ' '.join(['--' + arr[i].replace('_', '-') + '=' + fn_split[i] for i in range(len(arr))])
    logging.info(exe_path + ' --dither=0.0 --debug-mel=true ' + s + ' ' + scp_path + ' ' + out_fn)
    logging.info()
    # print args for python
    inputs['dither'] = 0.0
    logging.info(inputs)
    sound, sample_rate = torchaudio.load_wav(sound_path)
    kaldi_output_dict = {k: v for k, v in torchaudio.kaldi_io.read_mat_ark(out_fn)}
    res = torchaudio.compliance.kaldi.fbank(sound, **inputs)
    torch.set_printoptions(precision=10, sci_mode=False)
    logging.info(res)
    logging.info(kaldi_output_dict['my_id']) 
開發者ID:pytorch,項目名稱:audio,代碼行數:36,代碼來源:generate_fbank_data.py

示例5: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def forward(self, input):
        if not self.training or self.keep_prob == 1:
            return input
        gamma = (1. - self.keep_prob) / self.block_size ** 2
        for sh in input.shape[2:]:
            gamma *= sh / (sh - self.block_size + 1)
        M = torch.bernoulli(torch.ones_like(input) * gamma)
        Msum = F.conv2d(M,
                        torch.ones((input.shape[1], 1, self.block_size, self.block_size)).to(device=input.device,
                                                                                             dtype=input.dtype),
                        padding=self.block_size // 2,
                        groups=input.shape[1])
        torch.set_printoptions(threshold=5000)
        mask = (Msum < 1).to(device=input.device, dtype=input.dtype)
        return input * mask * mask.numel() /mask.sum() #TODO input * mask * self.keep_prob ? 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:17,代碼來源:dropblock.py

示例6: write_off

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def write_off(data, path):
    r"""Writes a :class:`torch_geometric.data.Data` object to an OFF (Object
    File Format) file.

    Args:
        data (:class:`torch_geometric.data.Data`): The data object.
        path (str): The path to the file.
    """
    num_nodes, num_faces = data.pos.size(0), data.face.size(1)

    pos = data.pos.to(torch.float)
    face = data.face.t()
    num_vertices = torch.full((num_faces, 1), face.size(1), dtype=torch.long)
    face = torch.cat([num_vertices, face], dim=-1)

    threshold = PRINT_OPTS.threshold
    torch.set_printoptions(threshold=float('inf'))

    pos_repr = re.sub(',', '', _tensor_str(pos, indent=0))
    pos_repr = '\n'.join([x[2:-1] for x in pos_repr.split('\n')])[:-1]

    face_repr = re.sub(',', '', _tensor_str(face, indent=0))
    face_repr = '\n'.join([x[2:-1] for x in face_repr.split('\n')])[:-1]

    with open(path, 'w') as f:
        f.write('OFF\n{} {} 0\n'.format(num_nodes, num_faces))
        f.write(pos_repr)
        f.write('\n')
        f.write(face_repr)
        f.write('\n')
    torch.set_printoptions(threshold=threshold) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:33,代碼來源:off.py

示例7: setUp

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def setUp(self):

        torch.set_printoptions(linewidth=160, threshold=1e3)

        seed = 7
        np.random.seed(1234)
        seed = np.random.randint(1e5)
        torch.manual_seed(seed)

        self.eps = 1e-4 
開發者ID:oval-group,項目名稱:smooth-topk,代碼行數:12,代碼來源:test_sum_product.py

示例8: get_attn_adj_mask

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def get_attn_adj_mask(adjs):
    adjs_mask = adjs.ne(0)  # batch*n_node*n_node
    # torch.set_printoptions(precision=None, threshold=float('inf'))
    # pdb.set_trace()

    n_neig = adjs_mask.sum(dim=2)
    adjs_mask[:, :, 0] += n_neig.eq(0)  # this is for making PAD not all zeros

    return adjs_mask.eq(0) 
開發者ID:thomas0809,項目名稱:GraphIE,代碼行數:11,代碼來源:transformer.py

示例9: set_printoptions

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def set_printoptions(
    precision=None, threshold=None, edgeitems=None, linewidth=None, profile=None, sci_mode=None
):
    """
    Configures the printing options. List of items shamelessly taken from NumPy and PyTorch (thanks guys!).

    Parameters
    ----------
    precision: int
        Number of digits of precision for floating point output (default=4).
    threshold: int
        Total number of array elements which trigger summarization rather than full `repr` string (default=1000).
    edgeitems: int
        Number of array items in summary at beginning and end of each dimension (default=3).
    linewidth: int
        The number of characters per line for the purpose of inserting line breaks (default = 80).
    profile: str
        Sane defaults for pretty printing. Can override with any of the above options. Can be any one of `default`,
        `short`, `full`.
    sci_mode: bool
        Enable (True) or disable (False) scientific notation. If None (default) is specified, the value is automatically
        inferred by HeAT.
    """
    torch.set_printoptions(precision, threshold, edgeitems, linewidth, profile, sci_mode)

    # HeAT profiles will print a bit wider than PyTorch does
    if profile == "default" and linewidth is None:
        torch._tensor_str.PRINT_OPTS.linewidth = _DEFAULT_LINEWIDTH
    elif profile == "short" and linewidth is None:
        torch._tensor_str.PRINT_OPTS.linewidth = _DEFAULT_LINEWIDTH
    elif profile == "full" and linewidth is None:
        torch._tensor_str.PRINT_OPTS.linewidth = _DEFAULT_LINEWIDTH 
開發者ID:helmholtz-analytics,項目名稱:heat,代碼行數:34,代碼來源:printing.py

示例10: unit_train

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def unit_train(self, data):
        xs, ys, frame_lens, label_lens, filenames, _ = data
        try:
            batch_size = xs.size(0)
            if self.use_cuda:
                xs = xs.cuda(non_blocking=True)
            ys_hat, frame_lens = self.model(xs, frame_lens)
            if self.fp16:
                ys_hat = ys_hat.float()
            ys_hat = ys_hat.transpose(0, 1).contiguous()  # TxNxH
            #torch.set_printoptions(threshold=5000000)
            #print(ys_hat.shape, frame_lens, ys.shape, label_lens)
            #print(onehot2int(ys_hat).squeeze(), ys)
            loss = self.loss(ys_hat, ys, frame_lens, label_lens)
            if torch.isnan(loss) or loss.item() == float("inf") or loss.item() == -float("inf"):
                logger.warning("received an nan/inf loss: probably frame_lens < label_lens or the learning rate is too high")
                #raise RuntimeError
                return None
            if frame_lens.cpu().lt(2*label_lens).nonzero().numel():
                logger.debug("the batch includes a data with frame_lens < 2*label_lens: set loss to zero")
                loss.mul_(0)
            loss_value = loss.item()
            self.optimizer.zero_grad()
            if self.fp16:
                #self.optimizer.backward(loss)
                #self.optimizer.clip_master_grads(self.max_norm)
                with self.optimizer.scale_loss(loss) as scaled_loss:
                    scaled_loss.backward()
            else:
                loss.backward()
                nn.utils.clip_grad_norm_(self.model.parameters(), self.max_norm)
            self.optimizer.step()
            if self.use_cuda:
                torch.cuda.synchronize()
            del loss
            return loss_value
        except Exception as e:
            print(e)
            print(filenames, frame_lens, label_lens)
            raise 
開發者ID:jinserk,項目名稱:pytorch-asr,代碼行數:42,代碼來源:trainer.py

示例11: decide

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def decide(self, src_tokens, prev_output_tokens, writing_grid):
        # torch.set_printoptions(precision=2)
        if not self.share_embeddings:
            x = self.observation_grid(src_tokens,
                                      prev_output_tokens) 
        else:
            x = writing_grid

        # Cumulative ResNet:
        x =  self.net(x)
        # Cell aggreegation
        x = x[:,-1, -1]
        # The R/W decisions:
        x = torch.sigmoid(self.gate(x)).squeeze(-1)  # p(read)
        return  1-x 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:17,代碼來源:pa_controller.py

示例12: decide

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def decide(self, x):
        torch.set_printoptions(precision=2)
        # Final LN
        if self.final_ln is not None:
            x = self.final_ln(x)
        # Aggregate
        x, _ = self.aggregator(x)
        x = x[:, -1, -1]
        # A stack of linear layers
        x =  self.net(x)
        # The R/W decisions:
        x = torch.sigmoid(self.gate(x)).squeeze(-1)  # p(read)
        return  1-x 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:15,代碼來源:shallow_controller.py

示例13: setUp

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def setUp(self, seed=1234):
        random.seed(seed)
        np.random.seed(seed)
        torch.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

        # Set pytorch print precision
        torch.set_printoptions(precision=10) 
開發者ID:NVIDIA,項目名稱:apex,代碼行數:10,代碼來源:test_label_smoothing.py

示例14: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def forward(self, input):
        if not self.training or self.keep_prob == 1:
            return input
        gamma = (1. - self.keep_prob) / self.block_size ** 2
        for sh in input.shape[2:]:
            gamma *= sh / (sh - self.block_size + 1)
        M = torch.bernoulli(torch.ones_like(input) * gamma)
        Msum = F.conv2d(M,
                        torch.ones((input.shape[1], 1, self.block_size, self.block_size)).to(device=input.device,
                                                                                             dtype=input.dtype),
                        padding=self.block_size // 2,
                        groups=input.shape[1])
        torch.set_printoptions(threshold=5000)
        mask = (Msum < 1).to(device=input.device, dtype=input.dtype)
        return input * mask * mask.numel() / mask.sum()  # TODO input * mask * self.keep_prob ? 
開發者ID:ansleliu,項目名稱:LightNetPlusPlus,代碼行數:17,代碼來源:dropout.py

示例15: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import set_printoptions [as 別名]
def forward(self, input, input_hidden, vocab, vocab_rev, decode_steps_t, graphs):
        all_outputs, all_words = [], []

        decoder_input = torch.tensor([vocab_rev['<s>']] * input.size(0)).cuda()
        decoder_hidden = input_hidden.unsqueeze(0)
        torch.set_printoptions(profile="full")

        for di in range(self.max_decode_steps):
            ret_decoder_output, decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, input, graphs)

            if self.k == 1:
                all_outputs.append(ret_decoder_output)

                dec_objs = []
                for i in range(decoder_output.shape[0]):
                    dec_probs = F.softmax(ret_decoder_output[i][graphs[i]], dim=0)
                    idx = dec_probs.multinomial(1)
                    graph_list = graphs[i].nonzero().cpu().numpy().flatten().tolist()
                    assert len(graph_list) == dec_probs.numel()
                    dec_objs.append(graph_list[idx])
                topi = torch.LongTensor(dec_objs).cuda()

                # dec_probs = self.softmax(decoder_output)
                # topi = dec_probs.multinomial(num_samples=1)
                # topi = self.softmax(decoder_output).topk(1)[1]

                decoder_input = topi.squeeze().detach()

                all_words.append(topi)
            else:
                topv, topi = decoder_output.topk(self.k)
                topv = self.softmax(topv)
                topv = topv.cpu().numpy()
                topi = topi.cpu().numpy()
                cur_objs = []

                for i in range(graphs.size(0)):
                    cur_obj = np.random.choice(topi[i].reshape(-1), p=topv[i].reshape(-1))
                    cur_objs.append(cur_obj)

                decoder_input = torch.LongTensor(cur_objs).cuda()
                all_words.append(decoder_input)
                all_outputs.append(decoder_output)

        return torch.stack(all_outputs), torch.stack(all_words) 
開發者ID:rajammanabrolu,項目名稱:KG-A2C,代碼行數:47,代碼來源:models.py


注:本文中的torch.set_printoptions方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。