本文整理匯總了Python中torch.randint_like方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.randint_like方法的具體用法?Python torch.randint_like怎麽用?Python torch.randint_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch
的用法示例。
在下文中一共展示了torch.randint_like方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: Hash_center_multilables
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def Hash_center_multilables(labels, Hash_center): # label.shape: [batch_size, num_class], Hash_center.shape: [num_class, hash_bits]
is_start = True
for label in labels:
one_labels = (label == 1).nonzero() # find the position of 1 in label
#if len(one_labels) == 0: # In nus_wide dataset, some image's labels are all zero, we ignore these images
#Center_mean = torch.zeros((1, Hash_center.size(1))) # let it's hash center be zero
#else:
one_labels = one_labels.squeeze(1)
Center_mean = torch.mean(Hash_center[one_labels], dim=0)
Center_mean[Center_mean<0] = -1
Center_mean[Center_mean>0] = 1
#random_center = torch.randint_like(Hash_center[0], 2) # the random binary vector {0, 1}, has the same shape with label
random_center[random_center==0] = -1 # the random binary vector become {-1, 1}
Center_mean[Center_mean == 0] = random_center[Center_mean == 0] # shape: [hash_bit]
Center_mean = Center_mean.view(1, -1) # shape:[1,hash_bit]
if is_start: # the first time
hash_center = Center_mean
is_start = False
else:
hash_center = torch.cat((hash_center, Center_mean), 0)
#hash_center = torch.stack((hash_center, Center_mean), dim=0)
return hash_center
示例2: word_dropout_raw
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def word_dropout_raw(x, l, unk_drop_prob, rand_drop_prob, vocab):
if not unk_drop_prob and not rand_drop_prob:
return x
assert unk_drop_prob + rand_drop_prob <= 1
noise = torch.rand(x.size(), dtype=torch.float).to(x.device)
pos_idx = torch.arange(x.size(1)).unsqueeze(0).expand_as(x).to(x.device)
token_mask = pos_idx < l.unsqueeze(1)
x2 = x.clone()
# drop to <unk> token
if unk_drop_prob:
unk_idx = vocab.stoi['<unk>']
unk_drop_mask = (noise < unk_drop_prob) & token_mask
x2.masked_fill_(unk_drop_mask, unk_idx)
# drop to random_mask
if rand_drop_prob:
rand_drop_mask = (noise > 1 - rand_drop_prob) & token_mask
rand_tokens = torch.randint_like(x, len(vocab))
rand_tokens.masked_fill_(1 - rand_drop_mask, 0)
x2.masked_fill_(rand_drop_mask, 0)
x2 = x2 + rand_tokens
return x2
示例3: rand_dropout_
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def rand_dropout_(x, l, drop_prob, vocab_size):
noise = torch.rand(x.size(), dtype=torch.float).to(x.device)
pos_idx = torch.arange(x.size(1)).unsqueeze(0).expand_as(x).to(x.device)
token_mask = pos_idx < l.unsqueeze(1)
rand_drop_mask = (noise < drop_prob) & token_mask
rand_tokens = torch.randint_like(x, vocab_size)
rand_tokens.masked_fill_(1 - rand_drop_mask, 0)
x.masked_fill_(rand_drop_mask, 0)
x += rand_tokens
示例4: trace
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def trace(self, maxIter=100, tol=1e-3):
"""
compute the trace of hessian using Hutchinson's method
maxIter: maximum iterations used to compute trace
tol: the relative tolerance
"""
device = self.device
trace_vhv = []
trace = 0.
for i in range(maxIter):
self.model.zero_grad()
v = [
torch.randint_like(p, high=2, device=device)
for p in self.params
]
# generate Rademacher random variables
for v_i in v:
v_i[v_i == 0] = -1
if self.full_dataset:
_, Hv = self.dataloader_hv_product(v)
else:
Hv = hessian_vector_product(self.gradsH, self.params, v)
trace_vhv.append(group_product(Hv, v).cpu().item())
if abs(np.mean(trace_vhv) - trace) / (trace + 1e-6) < tol:
return trace_vhv
else:
trace = np.mean(trace_vhv)
return trace_vhv
示例5: get_neg_batch
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def get_neg_batch(head, tail, entity_num):
neg_head = head.clone()
neg_tail = tail.clone()
if random.random() > 0.5:
offset_tensor = torch.randint_like(neg_head, entity_num)
neg_head = (neg_head + offset_tensor) % entity_num
else:
offset_tensor = torch.randint_like(neg_tail, entity_num)
neg_tail = (neg_tail + offset_tensor) % entity_num
return neg_head, neg_tail
示例6: __getitem__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def __getitem__(self, i):
dp = self.data[i]
r = torch.randint_like(dp, -100, 100) if self.enabled else 0.0
return dp + r * 0.01
示例7: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def forward(self, actions, batch_info=None):
if batch_info is None:
# Just take final value if there is no batch info
epsilon = self.epsilon_schedule.value(1.0)
else:
epsilon = self.epsilon_schedule.value(batch_info['progress'])
random_samples = torch.randint_like(actions, self.action_space.n)
selector = torch.rand_like(random_samples, dtype=torch.float32)
# Actions with noise applied
noisy_actions = torch.where(selector > epsilon, actions, random_samples)
return noisy_actions
示例8: test_zinb_distribution
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import randint_like [as 別名]
def test_zinb_distribution():
theta = 100.0 + torch.rand(size=(2,))
mu = 15.0 * torch.ones_like(theta)
pi = torch.randn_like(theta)
x = torch.randint_like(mu, high=20)
log_p_ref = log_zinb_positive(x, mu, theta, pi)
dist = ZeroInflatedNegativeBinomial(mu=mu, theta=theta, zi_logits=pi)
log_p_zinb = dist.log_prob(x)
assert (log_p_ref - log_p_zinb).abs().max().item() <= 1e-8
torch.manual_seed(0)
s1 = dist.sample((100,))
assert s1.shape == (100, 2)
s2 = dist.sample(sample_shape=(4, 3))
assert s2.shape == (4, 3, 2)
log_p_ref = log_nb_positive(x, mu, theta)
dist = NegativeBinomial(mu=mu, theta=theta)
log_p_nb = dist.log_prob(x)
assert (log_p_ref - log_p_nb).abs().max().item() <= 1e-8
s1 = dist.sample((1000,))
assert s1.shape == (1000, 2)
assert (s1.mean(0) - mu).abs().mean() <= 1e0
assert (s1.std(0) - (mu + mu * mu / theta) ** 0.5).abs().mean() <= 1e0
size = (50, 3)
theta = 100.0 + torch.rand(size=size)
mu = 15.0 * torch.ones_like(theta)
pi = torch.randn_like(theta)
x = torch.randint_like(mu, high=20)
dist1 = ZeroInflatedNegativeBinomial(mu=mu, theta=theta, zi_logits=pi)
dist2 = NegativeBinomial(mu=mu, theta=theta)
assert dist1.log_prob(x).shape == size
assert dist2.log_prob(x).shape == size
with pytest.raises(ValueError):
ZeroInflatedNegativeBinomial(mu=-mu, theta=theta, zi_logits=pi)
with pytest.warns(UserWarning):
dist1.log_prob(-x) # ensures neg values raise warning
with pytest.warns(UserWarning):
dist2.log_prob(0.5 * x) # ensures float values raise warning