當前位置: 首頁>>代碼示例>>Python>>正文


Python init.uniform_方法代碼示例

本文整理匯總了Python中torch.nn.init.uniform_方法的典型用法代碼示例。如果您正苦於以下問題:Python init.uniform_方法的具體用法?Python init.uniform_怎麽用?Python init.uniform_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn.init的用法示例。


在下文中一共展示了init.uniform_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def __init__(self, features, orthogonal_initialization=True, using_cache=False):
        """Constructor.

        Args:
            features: int, number of input features.
            orthogonal_initialization: bool, if True initialize weights to be a random
                orthogonal matrix.

        Raises:
            TypeError: if `features` is not a positive integer.
        """
        super().__init__(features, using_cache)

        if orthogonal_initialization:
            self._weight = nn.Parameter(utils.random_orthogonal(features))
        else:
            self._weight = nn.Parameter(torch.empty(features, features))
            stdv = 1.0 / np.sqrt(features)
            init.uniform_(self._weight, -stdv, stdv) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:21,代碼來源:linear.py

示例2: assert_and_infer_cfg

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def assert_and_infer_cfg(make_immutable=True):
    """Call this function in your script after you have finished setting all cfg
    values that are necessary (e.g., merging a config from a file, merging
    command line config options, etc.). By default, this function will also
    mark the global cfg as immutable to prevent changing the global cfg settings
    during script execution (which can lead to hard to debug errors or code
    that's harder to understand than is necessary).
    """
    if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS:
        assert __C.VGG.IMAGENET_PRETRAINED_WEIGHTS, \
            "Path to the weight file must not be empty to load imagenet pertrained resnets."
    if version.parse(torch.__version__) < version.parse('0.4.0'):
        __C.PYTORCH_VERSION_LESS_THAN_040 = True
        # create alias for PyTorch version less than 0.4.0
        init.uniform_ = init.uniform
        init.normal_ = init.normal
        init.constant_ = init.constant
        nn.GroupNorm = mynn.GroupNorm
    if make_immutable:
        cfg.immutable(True) 
開發者ID:ppengtang,項目名稱:pcl.pytorch,代碼行數:22,代碼來源:config.py

示例3: __init__

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def __init__(self,
                 features,
                 context_features,
                 activation=F.relu,
                 dropout_probability=0.,
                 use_batch_norm=False,
                 zero_initialization=True):
        super().__init__()
        self.activation = activation

        self.use_batch_norm = use_batch_norm
        if use_batch_norm:
            self.batch_norm_layers = nn.ModuleList([
                nn.BatchNorm1d(features, eps=1e-3)
                for _ in range(2)
            ])
        if context_features is not None:
            self.context_layer = nn.Linear(context_features, features)
        self.linear_layers = nn.ModuleList([
            nn.Linear(features, features)
            for _ in range(2)
        ])
        self.dropout = nn.Dropout(p=dropout_probability)
        if zero_initialization:
            init.uniform_(self.linear_layers[-1].weight, -1e-3, 1e-3)
            init.uniform_(self.linear_layers[-1].bias, -1e-3, 1e-3) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:28,代碼來源:resnet.py

示例4: _initialize

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def _initialize(self, identity_init):
        init.zeros_(self.bias)

        if identity_init:
            init.zeros_(self.lower_entries)
            init.zeros_(self.upper_entries)
            constant = np.log(np.exp(1 - self.eps) - 1)
            init.constant_(self.unconstrained_upper_diag, constant)
        else:
            stdv = 1.0 / np.sqrt(self.features)
            init.uniform_(self.lower_entries, -stdv, stdv)
            init.uniform_(self.upper_entries, -stdv, stdv)
            init.uniform_(self.unconstrained_upper_diag, -stdv, stdv) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:15,代碼來源:lu.py

示例5: _initialize

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def _initialize(self):
        stdv = 1.0 / np.sqrt(self.features)
        init.uniform_(self.upper_entries, -stdv, stdv)
        init.uniform_(self.log_upper_diag, -stdv, stdv)
        init.constant_(self.bias, 0.0) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:7,代碼來源:qr.py

示例6: _initialize

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def _initialize(self):
        stdv = 1.0 / np.sqrt(self.features)
        init.uniform_(self.log_diagonal, -stdv, stdv)
        init.constant_(self.bias, 0.0) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:6,代碼來源:svd.py

示例7: reset_parameters

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def reset_parameters(self):
        stdv = 1.0 / math.sqrt(self.hidden_size)
        for weight in self.parameters():
            init.uniform_(weight, -stdv, stdv) 
開發者ID:GitHub-HongweiZhang,項目名稱:prediction-flow,代碼行數:6,代碼來源:rnn.py

示例8: reset_parameters

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def reset_parameters(self):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound) 
開發者ID:rtqichen,項目名稱:residual-flows,代碼行數:8,代碼來源:lipschitz.py

示例9: reset_parameters

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def reset_parameters(self, zero_init=False):
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if zero_init:
            # normalize cannot handle zero weight in some cases.
            self.weight.data.div_(1000)
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound) 
開發者ID:rtqichen,項目名稱:residual-flows,代碼行數:11,代碼來源:mixed_lipschitz.py

示例10: reset_parameters

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def reset_parameters(self):
        n = self.in_channels
        init.kaiming_uniform_(self.weight, a=math.sqrt(5))
        if self.bias is not None:
            fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
            bound = 1 / math.sqrt(fan_in)
            init.uniform_(self.bias, -bound, bound) 
開發者ID:ruinmessi,項目名稱:ASFF,代碼行數:9,代碼來源:deform_conv2d.py

示例11: __init__

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def __init__(self, emb_size, emb_dimension):
        super(SkipGramModel, self).__init__()
        self.emb_size = emb_size
        self.emb_dimension = emb_dimension
        self.u_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True)
        self.v_embeddings = nn.Embedding(emb_size, emb_dimension, sparse=True)

        initrange = 1.0 / self.emb_dimension
        init.uniform_(self.u_embeddings.weight.data, -initrange, initrange)
        init.constant_(self.v_embeddings.weight.data, 0) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:12,代碼來源:model.py

示例12: init

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def init(self, emb_init):
        """Initializing the embeddings.

        Parameters
        ----------
        emb_init : float
            The intial embedding range should be [-emb_init, emb_init].
        """
        INIT.uniform_(self.emb, -emb_init, emb_init)
        INIT.zeros_(self.state_sum) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:12,代碼來源:tensor_models.py

示例13: reset_parameters

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def reset_parameters(self):
        """
        This method initializes or reset all the parameters of the cell.
        The paramaters are initiated following a uniform distribution.
        """
        std = 1.0 / np.sqrt(self.hidden_size)
        for w in self.parameters():
            init.uniform_(w, -std, std) 
開發者ID:OpenMined,項目名稱:PySyft,代碼行數:10,代碼來源:rnn.py

示例14: XavierFill

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def XavierFill(tensor):
    """Caffe2 XavierFill Implementation"""
    size = reduce(operator.mul, tensor.shape, 1)
    fan_in = size / tensor.shape[0]
    scale = math.sqrt(3 / fan_in)
    return init.uniform_(tensor, -scale, scale) 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:8,代碼來源:init.py

示例15: assert_and_infer_cfg

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import uniform_ [as 別名]
def assert_and_infer_cfg(make_immutable=True):
    """Call this function in your script after you have finished setting all cfg
    values that are necessary (e.g., merging a config from a file, merging
    command line config options, etc.). By default, this function will also
    mark the global cfg as immutable to prevent changing the global cfg settings
    during script execution (which can lead to hard to debug errors or code
    that's harder to understand than is necessary).
    """
    if __C.MODEL.RPN_ONLY or __C.MODEL.FASTER_RCNN:
        __C.RPN.RPN_ON = True
    if __C.RPN.RPN_ON or __C.RETINANET.RETINANET_ON:
        __C.TEST.PRECOMPUTED_PROPOSALS = False
    if __C.MODEL.LOAD_IMAGENET_PRETRAINED_WEIGHTS:
        assert __C.RESNETS.IMAGENET_PRETRAINED_WEIGHTS, \
            "Path to the weight file must not be empty to load imagenet pertrained resnets."
    if set([__C.MRCNN.ROI_MASK_HEAD, __C.KRCNN.ROI_KEYPOINTS_HEAD]) & _SHARE_RES5_HEADS:
        __C.MODEL.SHARE_RES5 = True
    if version.parse(torch.__version__) < version.parse('0.4.0'):
        __C.PYTORCH_VERSION_LESS_THAN_040 = True
        # create alias for PyTorch version less than 0.4.0
        init.uniform_ = init.uniform
        init.normal_ = init.normal
        init.constant_ = init.constant
        nn.GroupNorm = mynn.GroupNorm
    if make_immutable:
        cfg.immutable(True) 
開發者ID:roytseng-tw,項目名稱:Detectron.pytorch,代碼行數:28,代碼來源:config.py


注:本文中的torch.nn.init.uniform_方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。