當前位置: 首頁>>代碼示例>>Python>>正文


Python init.orthogonal_方法代碼示例

本文整理匯總了Python中torch.nn.init.orthogonal_方法的典型用法代碼示例。如果您正苦於以下問題:Python init.orthogonal_方法的具體用法?Python init.orthogonal_怎麽用?Python init.orthogonal_使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn.init的用法示例。


在下文中一共展示了init.orthogonal_方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type, init_gain):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)
    net.apply(init_func) 
開發者ID:ranahanocka,項目名稱:MeshCNN,代碼行數:20,代碼來源:networks.py

示例2: weights_init

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def weights_init(m):
    '''
    Code from https://gist.github.com/jeasinema/ed9236ce743c8efaf30fa2ff732749f5
    Usage:
        model = Model()
        model.apply(weight_init)
    '''
    if isinstance(m, nn.Linear):
        init.xavier_normal_(m.weight.data)
        init.normal_(m.bias.data)
    elif isinstance(m, nn.GRUCell):
        for param in m.parameters():
            if len(param.shape) >= 2:
                init.orthogonal_(param.data)
            else:
                init.normal_(param.data) 
開發者ID:dmlc,項目名稱:dgl,代碼行數:18,代碼來源:utils.py

示例3: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        # this will apply to each layer
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
            if init_type=='normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)
    #print('initialize network with %s' % init_type)
    net.apply(init_func) 
開發者ID:songdejia,項目名稱:Siamese-RPN-pytorch,代碼行數:25,代碼來源:train_siamrpn.py

示例4: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func) 
開發者ID:Lotayou,項目名稱:densebody_pytorch,代碼行數:24,代碼來源:networks.py

示例5: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(self):
    self.param_count = 0
    for module in self.modules():
      if (isinstance(module, nn.Conv2d) 
          or isinstance(module, nn.Linear) 
          or isinstance(module, nn.Embedding)):
        if self.init == 'ortho':
          init.orthogonal_(module.weight)
        elif self.init == 'N02':
          init.normal_(module.weight, 0, 0.02)
        elif self.init in ['glorot', 'xavier']:
          init.xavier_uniform_(module.weight)
        else:
          print('Init style not recognized...')
        self.param_count += sum([p.data.nelement() for p in module.parameters()])
    print('Param count for G''s initialized parameters: %d' % self.param_count)

  # Note on this forward function: we pass in a y vector which has
  # already been passed through G.shared to enable easy class-wise
  # interpolation later. If we passed in the one-hot and then ran it through
  # G.shared in this forward function, it would be harder to handle.
  # NOTE: The z vs y dichotomy here is for compatibility with not-y 
開發者ID:ajbrock,項目名稱:BigGAN-PyTorch,代碼行數:24,代碼來源:BigGANdeep.py

示例6: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(self):
    self.param_count = 0
    for module in self.modules():
      if (isinstance(module, nn.Conv2d) 
          or isinstance(module, nn.Linear) 
          or isinstance(module, nn.Embedding)):
        if self.init == 'ortho':
          init.orthogonal_(module.weight)
        elif self.init == 'N02':
          init.normal_(module.weight, 0, 0.02)
        elif self.init in ['glorot', 'xavier']:
          init.xavier_uniform_(module.weight)
        else:
          print('Init style not recognized...')
        self.param_count += sum([p.data.nelement() for p in module.parameters()])
    print('Param count for G''s initialized parameters: %d' % self.param_count)

  # Note on this forward function: we pass in a y vector which has
  # already been passed through G.shared to enable easy class-wise
  # interpolation later. If we passed in the one-hot and then ran it through
  # G.shared in this forward function, it would be harder to handle. 
開發者ID:ajbrock,項目名稱:BigGAN-PyTorch,代碼行數:23,代碼來源:BigGAN.py

示例7: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='normal', gain=0.02):
	def init_func(m):
		classname = m.__class__.__name__
		if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
			if init_type == 'normal':
				init.normal_(m.weight.data, 0.0, gain)
			elif init_type == 'xavier':
				init.xavier_normal_(m.weight.data, gain=gain)
			elif init_type == 'kaiming':
				init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
			elif init_type == 'orthogonal':
				init.orthogonal_(m.weight.data, gain=gain)
			else:
				raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
			if hasattr(m, 'bias') and m.bias is not None:
				init.constant_(m.bias.data, 0.0)
		elif classname.find('BatchNorm2d') != -1:
			init.normal_(m.weight.data, 1.0, gain)
			init.constant_(m.bias.data, 0.0)
	
	print('initialize network with %s' % init_type)
	net.apply(init_func) 
開發者ID:Luodian,項目名稱:MADAN,代碼行數:24,代碼來源:networks.py

示例8: reset_parameters

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def reset_parameters(self):
        """
        Initialize parameters following the way proposed in the paper.
        """
        init.orthogonal_(self.weight_ih.data)
        init.orthogonal_(self.alpha_weight_ih.data)

        weight_hh_data = torch.eye(self.hidden_size)
        weight_hh_data = weight_hh_data.repeat(1, 3)
        self.weight_hh.data.set_(weight_hh_data)

        alpha_weight_hh_data = torch.eye(self.hidden_size)
        alpha_weight_hh_data = alpha_weight_hh_data.repeat(1, 1)
        self.alpha_weight_hh.data.set_(alpha_weight_hh_data)

        # The bias is just set to zero vectors.
        if self.use_bias:
            init.constant_(self.bias.data, val=0)
            init.constant_(self.alpha_bias.data, val=0) 
開發者ID:thunlp,項目名稱:Chinese_NRE,代碼行數:21,代碼來源:mglattice.py

示例9: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='normal', init_gain=0.02):
    def init_func(m):
        name = m.__class__.__name__
        if hasattr(m, 'weight') and ('Conv' in name or 'Linear' in name):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError(
                    f'initialization method [{init_type}] is not implemented')
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif 'BatchNorm2d' in name:
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)

    net.apply(init_func) 
開發者ID:S-aiueo32,項目名稱:srntt-pytorch,代碼行數:24,代碼來源:__init__.py

示例10: init_weights_multi

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights_multi(m, init_type, gain=1.):
    classname = m.__class__.__name__
    if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
        if init_type == 'normal':
            init.normal_(m.weight.data, 0.0, gain)
        elif init_type == 'xavier':
            init.xavier_normal_(m.weight.data, gain=gain)
        elif init_type == 'kaiming':
            init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
        elif init_type == 'orthogonal':
            init.orthogonal_(m.weight.data, gain=gain)
        else:
            raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
        if hasattr(m, 'bias') and m.bias is not None:
            init.constant_(m.bias.data, 0.0)
    elif classname.find('BatchNorm') != -1:
        init.normal_(m.weight.data, 1.0, gain)
        init.constant_(m.bias.data, 0.0)


# ---------------- Pretty sure the following functions/classes are common ---------------- 
開發者ID:laoreja,項目名稱:HPLFlowNet,代碼行數:23,代碼來源:main_utils.py

示例11: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        # this will apply to each layer
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
            if init_type=='normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)
    print("EAST <==> Prepare <==> Init Network'{}' <==> Begin".format(init_type))

    net.apply(init_func) 
開發者ID:songdejia,項目名稱:EAST,代碼行數:26,代碼來源:init.py

示例12: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='xavier', gain=0.02):
    def init_func(m):
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func) 
開發者ID:richzhang,項目名稱:colorization-pytorch,代碼行數:24,代碼來源:networks.py

示例13: reset_parameters

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def reset_parameters(self):
        if self.use_leaf_rnn:
            init.kaiming_normal_(self.leaf_rnn_cell.weight_ih.data)
            init.orthogonal_(self.leaf_rnn_cell.weight_hh.data)
            init.constant_(self.leaf_rnn_cell.bias_ih.data, val=0)
            init.constant_(self.leaf_rnn_cell.bias_hh.data, val=0)
            # Set forget bias to 1
            self.leaf_rnn_cell.bias_ih.data.chunk(4)[1].fill_(1)
            if self.bidirectional:
                init.kaiming_normal_(self.leaf_rnn_cell_bw.weight_ih.data)
                init.orthogonal_(self.leaf_rnn_cell_bw.weight_hh.data)
                init.constant_(self.leaf_rnn_cell_bw.bias_ih.data, val=0)
                init.constant_(self.leaf_rnn_cell_bw.bias_hh.data, val=0)
                # Set forget bias to 1
                self.leaf_rnn_cell_bw.bias_ih.data.chunk(4)[1].fill_(1)
        else:
            init.kaiming_normal_(self.word_linear.weight.data)
            init.constant_(self.word_linear.bias.data, val=0)
        self.treelstm_layer.reset_parameters()
        init.normal_(self.comp_query.data, mean=0, std=0.01) 
開發者ID:BangLiu,項目名稱:QANet-PyTorch,代碼行數:22,代碼來源:treelstm.py

示例14: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='normal', gain=0.02):
    def init_func(m):
        # this will apply to each layer
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('conv')!=-1 or classname.find('Linear')!=-1):
            if init_type=='normal':
                init.normal_(m.weight.data, 0.0, gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')#good for relu
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:
            init.normal_(m.weight.data, 1.0, gain)
            init.constant_(m.bias.data, 0.0)
    #print('initialize network with %s' % init_type)
    net.apply(init_func)


############################################
# save checkpoint and resume
############################################ 
開發者ID:songdejia,項目名稱:DeepLab_v3_plus,代碼行數:30,代碼來源:util.py

示例15: init_weights

# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import orthogonal_ [as 別名]
def init_weights(net, init_type='normal', init_gain=0.02):
    """Initialize network weights.

    Parameters:
        net (network)   -- network to be initialized
        init_type (str) -- the name of an initialization method: normal | xavier | kaiming | orthogonal
        init_gain (float)    -- scaling factor for normal, xavier and orthogonal.

    We use 'normal' in the original pix2pix and CycleGAN paper. But xavier and kaiming might
    work better for some applications. Feel free to try yourself.
    """
    def init_func(m):  # define the initialization function
        classname = m.__class__.__name__
        if hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1):
            if init_type == 'normal':
                init.normal_(m.weight.data, 0.0, init_gain)
            elif init_type == 'xavier':
                init.xavier_normal_(m.weight.data, gain=init_gain)
            elif init_type == 'kaiming':
                init.kaiming_normal_(m.weight.data, a=0, mode='fan_in')
            elif init_type == 'orthogonal':
                init.orthogonal_(m.weight.data, gain=init_gain)
            else:
                raise NotImplementedError('initialization method [%s] is not implemented' % init_type)
            if hasattr(m, 'bias') and m.bias is not None:
                init.constant_(m.bias.data, 0.0)
        elif classname.find('BatchNorm2d') != -1:  # BatchNorm Layer's weight is not a matrix; only normal distribution applies.
            init.normal_(m.weight.data, 1.0, init_gain)
            init.constant_(m.bias.data, 0.0)

    print('initialize network with %s' % init_type)
    net.apply(init_func)  # apply the initialization function <init_func> 
開發者ID:Mingtzge,項目名稱:2019-CCF-BDCI-OCR-MCZJ-OCR-IdentificationIDElement,代碼行數:34,代碼來源:networks.py


注:本文中的torch.nn.init.orthogonal_方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。