本文整理匯總了Python中torch.nn.init._calculate_fan_in_and_fan_out方法的典型用法代碼示例。如果您正苦於以下問題:Python init._calculate_fan_in_and_fan_out方法的具體用法?Python init._calculate_fan_in_and_fan_out怎麽用?Python init._calculate_fan_in_and_fan_out使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch.nn.init
的用法示例。
在下文中一共展示了init._calculate_fan_in_and_fan_out方法的9個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: xavier_uniform_n_
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def xavier_uniform_n_(w: Tensor, gain: float = 1., n: int = 4) -> None:
"""
Xavier initializer for parameters that combine multiple matrices in one
parameter for efficiency. This is e.g. used for GRU and LSTM parameters,
where e.g. all gates are computed at the same time by 1 big matrix.
:param w: parameter
:param gain: default 1
:param n: default 4
"""
with torch.no_grad():
fan_in, fan_out = _calculate_fan_in_and_fan_out(w)
assert fan_out % n == 0, "fan_out should be divisible by n"
fan_out //= n
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
a = math.sqrt(3.0) * std
nn.init.uniform_(w, -a, a)
# pylint: disable=too-many-branches
示例2: xavier_uniform_n_
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def xavier_uniform_n_(w, gain=1., n=4):
"""
Xavier initializer for parameters that combine multiple matrices in one
parameter for efficiency. This is e.g. used for GRU and LSTM parameters,
where e.g. all gates are computed at the same time by 1 big matrix.
:param w:
:param gain:
:param n:
:return:
"""
with torch.no_grad():
fan_in, fan_out = _calculate_fan_in_and_fan_out(w)
assert fan_out % n == 0, "fan_out should be divisible by n"
fan_out = fan_out // n
std = gain * math.sqrt(2.0 / (fan_in + fan_out))
a = math.sqrt(3.0) * std
nn.init.uniform_(w, -a, a)
示例3: reset_parameters
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def reset_parameters(self):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
示例4: reset_parameters
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def reset_parameters(self, zero_init=False):
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if zero_init:
# normalize cannot handle zero weight in some cases.
self.weight.data.div_(1000)
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
示例5: reset_parameters
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def reset_parameters(self):
n = self.in_channels
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(self.bias, -bound, bound)
示例6: reset_parameters
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def reset_parameters(self):
init.kaiming_normal_(self._weight, a=math.sqrt(5))
fan_in, _ = init._calculate_fan_in_and_fan_out(self._weight)
bound = 4 / math.sqrt(fan_in)
init.uniform_(self._bias, -bound, bound)
if self.over_param:
with torch.no_grad(): self._bias.set_(self.manifold.expmap0(self._bias))
示例7: xavier_normal_small_init_
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def xavier_normal_small_init_(tensor, gain=1.):
# type: (Tensor, float) -> Tensor
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / float(fan_in + 4*fan_out))
return _no_grad_normal_(tensor, 0., std)
示例8: xavier_uniform_small_init_
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def xavier_uniform_small_init_(tensor, gain=1.):
# type: (Tensor, float) -> Tensor
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
std = gain * math.sqrt(2.0 / float(fan_in + 4*fan_out))
a = math.sqrt(3.0) * std # Calculate uniform bounds from standard deviation
return _no_grad_uniform_(tensor, -a, a)
示例9: init_pytorch_defaults
# 需要導入模塊: from torch.nn import init [as 別名]
# 或者: from torch.nn.init import _calculate_fan_in_and_fan_out [as 別名]
def init_pytorch_defaults(m, version='041'):
'''
Apply default inits from pytorch version 0.4.1 or 1.0.0.
pytorch 1.0 default inits are wonky :-(
'''
if version == '041':
# print('init.pt041: {0:s}'.format(str(m.weight.data.size())))
if isinstance(m, nn.Linear):
stdv = 1. / math.sqrt(m.weight.size(1))
m.weight.data.uniform_(-stdv, stdv)
if m.bias is not None:
m.bias.data.uniform_(-stdv, stdv)
elif isinstance(m, nn.Conv2d):
n = m.in_channels
for k in m.kernel_size:
n *= k
stdv = 1. / math.sqrt(n)
m.weight.data.uniform_(-stdv, stdv)
if m.bias is not None:
m.bias.data.uniform_(-stdv, stdv)
elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
if m.affine:
m.weight.data.uniform_()
m.bias.data.zero_()
else:
assert False
elif version == '100':
# print('init.pt100: {0:s}'.format(str(m.weight.data.size())))
if isinstance(m, nn.Linear):
init.kaiming_uniform_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(m.bias, -bound, bound)
elif isinstance(m, nn.Conv2d):
n = m.in_channels
init.kaiming_uniform_(m.weight, a=math.sqrt(5))
if m.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(m.weight)
bound = 1 / math.sqrt(fan_in)
init.uniform_(m.bias, -bound, bound)
elif isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
if m.affine:
m.weight.data.uniform_()
m.bias.data.zero_()
else:
assert False
elif version == 'custom':
# print('init.custom: {0:s}'.format(str(m.weight.data.size())))
if isinstance(m, (nn.BatchNorm2d, nn.BatchNorm1d)):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
else:
assert False
else:
assert False