當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.__dict__方法代碼示例

本文整理匯總了Python中torch.nn.__dict__方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.__dict__方法的具體用法?Python nn.__dict__怎麽用?Python nn.__dict__使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.__dict__方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import __dict__ [as 別名]
def __init__(self, N, branches, in_channels, preprocess=None, activation=func.tanh):
    """Pixel-wise branch selection layer using attention.

    Args:
      N (int): dimensionality of convolutions.
      branches (iterable nn.Module): neural network branches to choose from.
      in_channels (int): number of input channels.
      preprocess (nn.Module): module performing feature preprocessing for attention.
      activation (nn.Module): activation function for attention computation. 
    """
    super(AttentionBranch, self).__init__()
    self.is_module = False
    if isinstance(branches, nn.Module):
      self.branches = branches
      self.is_module = True
    else:
      self.branches = nn.ModuleList(branches)
    branch_size = len(self.branches)
    self.attention_preprocess = preprocess
    if self.attention_preprocess == None:
      self.attention_preprocess = nn.__dict__[f"Conv{N}d"](in_channels, in_channels, 3)
    self.attention_activation = activation
    self.attention_calculation = nn.__dict__[f"Conv{N}d"](in_channels, branch_size, 1) 
開發者ID:mjendrusch,項目名稱:torchsupport,代碼行數:25,代碼來源:attention.py

示例2: generic_load

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import __dict__ [as 別名]
def generic_load(arch, pretrained, weights, args):
    if arch in tmodels.__dict__:  # torchvision models
        if pretrained:
            print("=> using pre-trained model '{}'".format(arch))
            model = tmodels.__dict__[arch](pretrained=True)
            model = model.cuda()
        else:
            print("=> creating model '{}'".format(arch))
            model = tmodels.__dict__[arch]()
    else:  # defined as script in this directory
        model = importlib.import_module('.' + arch, package='models')
        model = model.__dict__[arch](args)

    if not weights == '':
        print('loading pretrained-weights from {}'.format(weights))
        chkpoint = torch.load(weights)
        if isinstance(chkpoint, dict) and 'state_dict' in chkpoint:
            chkpoint = chkpoint['state_dict']
        load_partial_state(model, chkpoint)
    return model 
開發者ID:gsig,項目名稱:actor-observer,代碼行數:22,代碼來源:utils.py

示例3: get_nn_name

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import __dict__ [as 別名]
def get_nn_name(uncased_name):
    '''Helper to get the proper name in PyTorch nn given a case-insensitive name'''
    for nn_name in nn.__dict__:
        if uncased_name.lower() == nn_name.lower():
            return nn_name
    raise ValueError(f'Name {uncased_name} not found in {nn.__dict__}') 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:8,代碼來源:net_util.py

示例4: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import __dict__ [as 別名]
def __init__(self, width, stride, input, kernels, kernels11,
               activation=func.leaky_relu,
               activation_1x1=func.leaky_relu,
               dim=2):
    super(Conv1x1, self).__init__()
    assert(dim in [1, 2, 3])
    self.conv_op = nn.__dict__[f"Conv{dim}d"]
    self.bn_op = nn.__dict__[f"BatchNorm{dim}d"]
    self.conv = self.conv_op(input, kernels, width, stride, 1)
    self.bn = self.bn_op(kernels)
    self.x11 = self.conv_op(kernels, kernels11, 1, 1)
    self.bn11 = self.bn_op(kernels11)
    self.activation = activation
    self.activation_1x1 = activation_1x1 
開發者ID:mjendrusch,項目名稱:torchsupport,代碼行數:16,代碼來源:compact.py

示例5: load_criterion

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import __dict__ [as 別名]
def load_criterion(args):
    if hasattr(nn, args.loss):
        criterion = nn.__dict__[args.loss]().cuda()
    else:
        criterion = importlib.import_module('models.layers.' + args.loss)
        criterion = criterion.__dict__[args.loss](args).cuda()
    return criterion 
開發者ID:gsig,項目名稱:actor-observer,代碼行數:9,代碼來源:utils.py

示例6: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import __dict__ [as 別名]
def __init__(
        self,
        num_features: int,
        activation: str = "leaky_relu",
        batchnorm_params: Dict = None,
        activation_params: Dict = None,
        use_batchnorm: bool = True,
    ):
        """
        Args:
            num_features (int): number of feature channels
                in the input and output
            activation (str): name of the activation functions, one of:
                ``'leaky_relu'``, ``'elu'`` or ``'none'``.
            batchnorm_params (dict): additional ``nn.BatchNorm2d`` params
            activation_params (dict): additional params for activation fucntion
            use_batchnorm (bool): @TODO: Docs. Contribution is welcome
        """
        super().__init__()
        batchnorm_params = batchnorm_params or {}
        activation_params = activation_params or {}

        layers = []
        if use_batchnorm:
            layers.append(
                nn.BatchNorm2d(num_features=num_features, **batchnorm_params)
            )
        if activation is not None and activation.lower() != "none":
            layers.append(
                nn.__dict__[activation](inplace=True, **activation_params)
            )

        self.net = nn.Sequential(*layers) 
開發者ID:catalyst-team,項目名稱:catalyst,代碼行數:35,代碼來源:abn.py


注:本文中的torch.nn.__dict__方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。