當前位置: 首頁>>代碼示例>>Python>>正文


Python nn.ReLU方法代碼示例

本文整理匯總了Python中torch.nn.ReLU方法的典型用法代碼示例。如果您正苦於以下問題:Python nn.ReLU方法的具體用法?Python nn.ReLU怎麽用?Python nn.ReLU使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch.nn的用法示例。


在下文中一共展示了nn.ReLU方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, input_size, n_channels, ngf, n_layers, activation='tanh'):
    super(ImageDecoder, self).__init__()

    ngf = ngf * (2 ** (n_layers - 2))
    layers = [nn.ConvTranspose2d(input_size, ngf, 4, 1, 0, bias=False),
              nn.BatchNorm2d(ngf),
              nn.ReLU(True)]

    for i in range(1, n_layers - 1):
      layers += [nn.ConvTranspose2d(ngf, ngf // 2, 4, 2, 1, bias=False),
                 nn.BatchNorm2d(ngf // 2),
                 nn.ReLU(True)]
      ngf = ngf // 2

    layers += [nn.ConvTranspose2d(ngf, n_channels, 4, 2, 1, bias=False)]
    if activation == 'tanh':
      layers += [nn.Tanh()]
    elif activation == 'sigmoid':
      layers += [nn.Sigmoid()]
    else:
      raise NotImplementedError

    self.main = nn.Sequential(*layers) 
開發者ID:jthsieh,項目名稱:DDPAE-video-prediction,代碼行數:25,代碼來源:decoder.py

示例2: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self):
        super(GoogLeNet, self).__init__()
        self.pre_layers = nn.Sequential(
            nn.Conv2d(3, 192, kernel_size=3, padding=1),
            nn.BatchNorm2d(192),
            nn.ReLU(True),
        )

        self.a3 = Inception(192,  64,  96, 128, 16, 32, 32)
        self.b3 = Inception(256, 128, 128, 192, 32, 96, 64)

        self.maxpool = nn.MaxPool2d(3, stride=2, padding=1)

        self.a4 = Inception(480, 192,  96, 208, 16,  48,  64)
        self.b4 = Inception(512, 160, 112, 224, 24,  64,  64)
        self.c4 = Inception(512, 128, 128, 256, 24,  64,  64)
        self.d4 = Inception(512, 112, 144, 288, 32,  64,  64)
        self.e4 = Inception(528, 256, 160, 320, 32, 128, 128)

        self.a5 = Inception(832, 256, 160, 320, 32, 128, 128)
        self.b5 = Inception(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(8, stride=1)
        self.linear = nn.Linear(1024, 10) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:26,代碼來源:googlenet.py

示例3: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, block, layers, num_classes=1000):
    self.inplanes = 64
    super(ResNet, self).__init__()
    self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                 bias=False)
    self.bn1 = nn.BatchNorm2d(64)
    self.relu = nn.ReLU(inplace=True)
    # maxpool different from pytorch-resnet, to match tf-faster-rcnn
    self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
    self.layer1 = self._make_layer(block, 64, layers[0])
    self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
    self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
    # use stride 1 for the last conv4 layer (same as tf-faster-rcnn)
    self.layer4 = self._make_layer(block, 512, layers[3], stride=1)

    for m in self.modules():
      if isinstance(m, nn.Conv2d):
        n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
        m.weight.data.normal_(0, math.sqrt(2. / n))
      elif isinstance(m, nn.BatchNorm2d):
        m.weight.data.fill_(1)
        m.bias.data.zero_() 
開發者ID:Sunarker,項目名稱:Collaborative-Learning-for-Weakly-Supervised-Object-Detection,代碼行數:24,代碼來源:resnet_v1.py

示例4: vgg

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def vgg(conv_arch, fc_features, fc_hidden_units=4096):
    net = nn.Sequential()
    # 卷積層部分
    for i, (num_convs, in_channels, out_channels) in enumerate(conv_arch):
        # 每經過一個 vgg_block 寬高減半
        net.add_module('vgg_block_' + str(i+1), vgg_block(num_convs, in_channels, out_channels))
    # 全連接部分
    net.add_module('fc', nn.Sequential(
        utils.FlattenLayer(),
        nn.Linear(fc_features, fc_hidden_units),
        nn.ReLU(),
        nn.Dropout(0.5),
        nn.Linear(fc_hidden_units, fc_hidden_units),
        nn.ReLU(),
        nn.Dropout(0.5),
        nn.Linear(fc_hidden_units, 10)
    ))
    return net 
開發者ID:wdxtub,項目名稱:deep-learning-note,代碼行數:20,代碼來源:22_vgg.py

示例5: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, block, layers, num_classes=1000):
        self.inplanes = 64
        super(MyResNet, self).__init__()
        self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        # note the increasing dilation
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilation=1)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=1, dilation=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=1, dilation=4)

        # these layers will not be used
        self.avgpool = nn.AvgPool2d(7)
        self.fc = nn.Linear(512 * block.expansion, num_classes)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:aleju,項目名稱:cat-bbs,代碼行數:27,代碼來源:model.py

示例6: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, rnn_type, input_size, node_fdim, hidden_size, depth, dropout):
        super(MPNEncoder, self).__init__()
        self.hidden_size = hidden_size
        self.input_size = input_size
        self.depth = depth
        self.W_o = nn.Sequential( 
                nn.Linear(node_fdim + hidden_size, hidden_size), 
                nn.ReLU(),
                nn.Dropout(dropout)
        )

        if rnn_type == 'GRU':
            self.rnn = GRU(input_size, hidden_size, depth) 
        elif rnn_type == 'LSTM':
            self.rnn = LSTM(input_size, hidden_size, depth) 
        else:
            raise ValueError('unsupported rnn cell type ' + rnn_type) 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:19,代碼來源:encoder.py

示例7: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAlign, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            4, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:18,代碼來源:fovea_head.py

示例8: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 deformable_groups=4):
        super(FeatureAdaption, self).__init__()
        offset_channels = kernel_size * kernel_size * 2
        self.conv_offset = nn.Conv2d(
            2, deformable_groups * offset_channels, 1, bias=False)
        self.conv_adaption = DeformConv(
            in_channels,
            out_channels,
            kernel_size=kernel_size,
            padding=(kernel_size - 1) // 2,
            deformable_groups=deformable_groups)
        self.relu = nn.ReLU(inplace=True) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:18,代碼來源:guided_anchor_head.py

示例9: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self,
                 num_branches,
                 blocks,
                 num_blocks,
                 in_channels,
                 num_channels,
                 multiscale_output=True,
                 with_cp=False,
                 conv_cfg=None,
                 norm_cfg=dict(type='BN')):
        super(HRModule, self).__init__()
        self._check_branches(num_branches, num_blocks, in_channels,
                             num_channels)

        self.in_channels = in_channels
        self.num_branches = num_branches

        self.multiscale_output = multiscale_output
        self.norm_cfg = norm_cfg
        self.conv_cfg = conv_cfg
        self.with_cp = with_cp
        self.branches = self._make_branches(num_branches, blocks, num_blocks,
                                            num_channels)
        self.fuse_layers = self._make_fuse_layers()
        self.relu = nn.ReLU(inplace=False) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:27,代碼來源:hrnet.py

示例10: _make_layers

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def _make_layers(self, cfg):
        layers = []
        in_channels = 3
        for x in cfg:
            if x == 'M':
                layers += [nn.MaxPool2d(kernel_size=2, stride=2)]
            else:
                layers += [nn.Conv2d(in_channels, x, kernel_size=3, padding=1),
                           nn.BatchNorm2d(x),
                           nn.ReLU(inplace=True)]
                in_channels = x
        layers += [nn.AvgPool2d(kernel_size=1, stride=1)]
        return nn.Sequential(*layers)

# net = VGG('VGG11')
# x = torch.randn(2,3,32,32)
# print(net(Variable(x)).size()) 
開發者ID:StephanZheng,項目名稱:neural-fingerprinting,代碼行數:19,代碼來源:vgg.py

示例11: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__( self ):
        super(CNN, self).__init__()
        
        self.elmo_feature_extractor = nn.Sequential(
                        nn.Conv2d( 1024, 32, kernel_size=(7,1), padding=(3,0) ),
                        nn.ReLU(),
                        nn.Dropout( 0.25 ),
                        )
        

        n_final_in = 32
        self.dssp3_classifier = nn.Sequential(
                        nn.Conv2d( n_final_in, 3, kernel_size=(7,1), padding=(3,0))
                        )
        
        self.dssp8_classifier = nn.Sequential(
                        nn.Conv2d( n_final_in, 8, kernel_size=(7,1), padding=(3,0))
                        )
        self.diso_classifier = nn.Sequential(
                        nn.Conv2d( n_final_in, 2, kernel_size=(7,1), padding=(3,0))
                        ) 
開發者ID:kipoi,項目名稱:models,代碼行數:23,代碼來源:model.py

示例12: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, vocab_size, word_dim, embed_size, use_abs=False, glove_path='data/glove.pkl'):
        super(EncoderTextCNN, self).__init__()
        self.use_abs = use_abs
        self.embed_size = embed_size

        # word embedding
        self.embed = nn.Embedding(vocab_size, word_dim-300, padding_idx=0)  # 0 for <pad>
        _, embed_weight = pickle.load(open(glove_path, 'rb'))
        self.glove = Variable(torch.cuda.FloatTensor(embed_weight), requires_grad=False)

        channel_num = embed_size // 4
        self.conv2 = nn.Conv1d(word_dim, channel_num, 2)
        self.conv3 = nn.Conv1d(word_dim, channel_num, 3)
        self.conv4 = nn.Conv1d(word_dim, channel_num, 4)
        self.conv5 = nn.Conv1d(word_dim, channel_num, 5)
        self.drop = nn.Dropout(p=0.5)
        self.relu = nn.ReLU()

#        self.mlp = nn.Linear(embed_size, embed_size)

        self.init_weights() 
開發者ID:ExplorerFreda,項目名稱:VSE-C,代碼行數:23,代碼來源:model.py

示例13: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, block, layers, in_channels=3):
        self.inplanes = 64
        super(ResNet, self).__init__()
        self.conv1 = nn.Conv2d(in_channels, 64, kernel_size=7, stride=2, padding=3,
                               bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2)

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
                m.weight.data.normal_(0, math.sqrt(2. / n))
            elif isinstance(m, nn.BatchNorm2d):
                m.weight.data.fill_(1)
                m.bias.data.zero_() 
開發者ID:toodef,項目名稱:neural-pipeline,代碼行數:22,代碼來源:albunet.py

示例14: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, in_ch, out_ch,group_conv,dilation=1):
        super(double_conv, self).__init__()
        if group_conv:
            self.conv = nn.Sequential(
                nn.Conv2d(in_ch, out_ch, 3, padding=1,groups = min(out_ch,in_ch)),
                nn.BatchNorm2d(out_ch),
                nn.ReLU(inplace=True),
                nn.Conv2d(out_ch, out_ch, 3, padding=1,groups = out_ch),
                nn.BatchNorm2d(out_ch),
                nn.ReLU(inplace=True)
            )
        else:
            self.conv = nn.Sequential(
                nn.Conv2d(in_ch, out_ch, 3, padding=1),
                nn.BatchNorm2d(out_ch),
                nn.ReLU(inplace=True),
                nn.Conv2d(out_ch, out_ch, 3, padding=1),
                nn.BatchNorm2d(out_ch),
                nn.ReLU(inplace=True)
            ) 
開發者ID:edwardzhou130,項目名稱:PolarSeg,代碼行數:22,代碼來源:BEV_Unet.py

示例15: __init__

# 需要導入模塊: from torch import nn [as 別名]
# 或者: from torch.nn import ReLU [as 別名]
def __init__(self, args):
        super(HierVGNN, self).__init__()
        self.latent_size = args.latent_size
        self.encoder = HierMPNEncoder(args.vocab, args.atom_vocab, args.rnn_type, args.embed_size, args.hidden_size, args.depthT, args.depthG, args.dropout)
        self.decoder = HierMPNDecoder(args.vocab, args.atom_vocab, args.rnn_type, args.embed_size, args.hidden_size, args.hidden_size, args.diterT, args.diterG, args.dropout, attention=True)
        self.encoder.tie_embedding(self.decoder.hmpn)

        self.T_mean = nn.Linear(args.hidden_size, args.latent_size)
        self.T_var = nn.Linear(args.hidden_size, args.latent_size)
        self.G_mean = nn.Linear(args.hidden_size, args.latent_size)
        self.G_var = nn.Linear(args.hidden_size, args.latent_size)

        self.W_tree = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size, args.hidden_size), nn.ReLU() )
        self.W_graph = nn.Sequential( nn.Linear(args.hidden_size + args.latent_size, args.hidden_size), nn.ReLU() ) 
開發者ID:wengong-jin,項目名稱:hgraph2graph,代碼行數:16,代碼來源:hgnn.py


注:本文中的torch.nn.ReLU方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。