當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.min方法代碼示例

本文整理匯總了Python中torch.min方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.min方法的具體用法?Python torch.min怎麽用?Python torch.min使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.min方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: iou_loss

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def iou_loss(pred, target, eps=1e-6):
    """IoU loss.

    Computing the IoU loss between a set of predicted bboxes and target bboxes.
    The loss is calculated as negative log of IoU.

    Args:
        pred (torch.Tensor): Predicted bboxes of format (x1, y1, x2, y2),
            shape (n, 4).
        target (torch.Tensor): Corresponding gt bboxes, shape (n, 4).
        eps (float): Eps to avoid log(0).

    Return:
        torch.Tensor: Loss tensor.
    """
    ious = bbox_overlaps(pred, target, is_aligned=True).clamp(min=eps)
    loss = -ious.log()
    return loss 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:20,代碼來源:iou_loss.py

示例2: crop_images_random

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def crop_images_random(path='../images/', scale=0.50):  # from utils.utils import *; crop_images_random()
    # crops images into random squares up to scale fraction
    # WARNING: overwrites images!
    for file in tqdm(sorted(glob.glob('%s/*.*' % path))):
        img = cv2.imread(file)  # BGR
        if img is not None:
            h, w = img.shape[:2]

            # create random mask
            a = 30  # minimum size (pixels)
            mask_h = random.randint(a, int(max(a, h * scale)))  # mask height
            mask_w = mask_h  # mask width

            # box
            xmin = max(0, random.randint(0, w) - mask_w // 2)
            ymin = max(0, random.randint(0, h) - mask_h // 2)
            xmax = min(w, xmin + mask_w)
            ymax = min(h, ymin + mask_h)

            # apply random color mask
            cv2.imwrite(file, img[ymin:ymax, xmin:xmax]) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:23,代碼來源:utils.py

示例3: plot_images

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def plot_images(imgs, targets, paths=None, fname='images.jpg'):
    # Plots training images overlaid with targets
    imgs = imgs.cpu().numpy()
    targets = targets.cpu().numpy()
    # targets = targets[targets[:, 1] == 21]  # plot only one class

    fig = plt.figure(figsize=(10, 10))
    bs, _, h, w = imgs.shape  # batch size, _, height, width
    bs = min(bs, 16)  # limit plot to 16 images
    ns = np.ceil(bs ** 0.5)  # number of subplots

    for i in range(bs):
        boxes = xywh2xyxy(targets[targets[:, 0] == i, 2:6]).T
        boxes[[0, 2]] *= w
        boxes[[1, 3]] *= h
        plt.subplot(ns, ns, i + 1).imshow(imgs[i].transpose(1, 2, 0))
        plt.plot(boxes[[0, 2, 2, 0, 0]], boxes[[1, 1, 3, 3, 1]], '.-')
        plt.axis('off')
        if paths is not None:
            s = Path(paths[i]).name
            plt.title(s[:min(len(s), 40)], fontdict={'size': 8})  # limit to 40 characters
    fig.tight_layout()
    fig.savefig(fname, dpi=200)
    plt.close() 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:26,代碼來源:utils.py

示例4: plot_evolution_results

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def plot_evolution_results(hyp):  # from utils.utils import *; plot_evolution_results(hyp)
    # Plot hyperparameter evolution results in evolve.txt
    x = np.loadtxt('evolve.txt', ndmin=2)
    f = fitness(x)
    weights = (f - f.min()) ** 2  # for weighted results
    fig = plt.figure(figsize=(12, 10))
    matplotlib.rc('font', **{'size': 8})
    for i, (k, v) in enumerate(hyp.items()):
        y = x[:, i + 5]
        # mu = (y * weights).sum() / weights.sum()  # best weighted result
        mu = y[f.argmax()]  # best single result
        plt.subplot(4, 5, i + 1)
        plt.plot(mu, f.max(), 'o', markersize=10)
        plt.plot(y, f, '.')
        plt.title('%s = %.3g' % (k, mu), fontdict={'size': 9})  # limit to 40 characters
        print('%15s: %.3g' % (k, mu))
    fig.tight_layout()
    plt.savefig('evolve.png', dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:20,代碼來源:utils.py

示例5: plot_results

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def plot_results(start=0, stop=0):  # from utils.utils import *; plot_results()
    # Plot training results files 'results*.txt'
    fig, ax = plt.subplots(2, 5, figsize=(14, 7))
    ax = ax.ravel()
    s = ['GIoU', 'Objectness', 'Classification', 'Precision', 'Recall',
         'val GIoU', 'val Objectness', 'val Classification', 'mAP', 'F1']
    for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
        results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
        n = results.shape[1]  # number of rows
        x = range(start, min(stop, n) if stop else n)
        for i in range(10):
            y = results[i, x]
            if i in [0, 1, 2, 5, 6, 7]:
                y[y == 0] = np.nan  # dont show zero loss values
            ax[i].plot(x, y, marker='.', label=f.replace('.txt', ''))
            ax[i].set_title(s[i])
            if i in [5, 6, 7]:  # share train and val loss y axes
                ax[i].get_shared_y_axes().join(ax[i], ax[i - 5])

    fig.tight_layout()
    ax[1].legend()
    fig.savefig('results.png', dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:24,代碼來源:utils.py

示例6: plot_results_overlay

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def plot_results_overlay(start=0, stop=0):  # from utils.utils import *; plot_results_overlay()
    # Plot training results files 'results*.txt', overlaying train and val losses
    s = ['train', 'train', 'train', 'Precision', 'mAP', 'val', 'val', 'val', 'Recall', 'F1']  # legends
    t = ['GIoU', 'Objectness', 'Classification', 'P-R', 'mAP-F1']  # titles
    for f in sorted(glob.glob('results*.txt') + glob.glob('../../Downloads/results*.txt')):
        results = np.loadtxt(f, usecols=[2, 3, 4, 8, 9, 12, 13, 14, 10, 11], ndmin=2).T
        n = results.shape[1]  # number of rows
        x = range(start, min(stop, n) if stop else n)
        fig, ax = plt.subplots(1, 5, figsize=(14, 3.5))
        ax = ax.ravel()
        for i in range(5):
            for j in [i, i + 5]:
                y = results[j, x]
                if i in [0, 1, 2]:
                    y[y == 0] = np.nan  # dont show zero loss values
                ax[i].plot(x, y, marker='.', label=s[j])
            ax[i].set_title(t[i])
            ax[i].legend()
            ax[i].set_ylabel(f) if i == 0 else None  # add filename
        fig.tight_layout()
        fig.savefig(f.replace('.txt', '.png'), dpi=200) 
開發者ID:zbyuan,項目名稱:pruning_yolov3,代碼行數:23,代碼來源:utils.py

示例7: shem

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def shem(roi_probs_neg, negative_count, ohem_poolsize):
    """
    stochastic hard example mining: from a list of indices (referring to non-matched predictions),
    determine a pool of highest scoring (worst false positives) of size negative_count*ohem_poolsize.
    Then, sample n (= negative_count) predictions of this pool as negative examples for loss.
    :param roi_probs_neg: tensor of shape (n_predictions, n_classes).
    :param negative_count: int.
    :param ohem_poolsize: int.
    :return: (negative_count).  indices refer to the positions in roi_probs_neg. If pool smaller than expected due to
    limited negative proposals availabel, this function will return sampled indices of number < negative_count without
    throwing an error.
    """
    # sort according to higehst foreground score.
    probs, order = roi_probs_neg[:, 1:].max(1)[0].sort(descending=True)
    select = torch.tensor((ohem_poolsize * int(negative_count), order.size()[0])).min().int()
    pool_indices = order[:select]
    rand_idx = torch.randperm(pool_indices.size()[0])
    return pool_indices[rand_idx[:negative_count].cuda()] 
開發者ID:MIC-DKFZ,項目名稱:medicaldetectiontoolkit,代碼行數:20,代碼來源:model_utils.py

示例8: iou

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def iou(source: Tensor, other: Tensor) -> Tensor:
        source, other = source.unsqueeze(dim=-2).repeat(1, 1, other.shape[-2], 1), \
                        other.unsqueeze(dim=-3).repeat(1, source.shape[-2], 1, 1)

        source_area = (source[..., 2] - source[..., 0]) * (source[..., 3] - source[..., 1])
        other_area = (other[..., 2] - other[..., 0]) * (other[..., 3] - other[..., 1])

        intersection_left = torch.max(source[..., 0], other[..., 0])
        intersection_top = torch.max(source[..., 1], other[..., 1])
        intersection_right = torch.min(source[..., 2], other[..., 2])
        intersection_bottom = torch.min(source[..., 3], other[..., 3])
        intersection_width = torch.clamp(intersection_right - intersection_left, min=0)
        intersection_height = torch.clamp(intersection_bottom - intersection_top, min=0)
        intersection_area = intersection_width * intersection_height

        return intersection_area / (source_area + other_area - intersection_area) 
開發者ID:potterhsu,項目名稱:easy-faster-rcnn.pytorch,代碼行數:18,代碼來源:bbox.py

示例9: intersect

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def intersect(box_a, box_b):
    """ We resize both tensors to [A,B,2] without new malloc:
    [A,2] -> [A,1,2] -> [A,B,2]
    [B,2] -> [1,B,2] -> [A,B,2]
    Then we compute the area of intersect between box_a and box_b.
    Args:
      box_a: (tensor) bounding boxes, Shape: [A,4].
      box_b: (tensor) bounding boxes, Shape: [B,4].
    Return:
      (tensor) intersection area, Shape: [A,B].
    """
    A = box_a.size(0)
    B = box_b.size(0)
    max_xy = torch.min(box_a[:, 2:].unsqueeze(1).expand(A, B, 2),
                       box_b[:, 2:].unsqueeze(0).expand(A, B, 2))
    min_xy = torch.max(box_a[:, :2].unsqueeze(1).expand(A, B, 2),
                       box_b[:, :2].unsqueeze(0).expand(A, B, 2))
    inter = torch.clamp((max_xy - min_xy), min=0)
    return inter[:, :, 0] * inter[:, :, 1] 
開發者ID:soo89,項目名稱:CSD-SSD,代碼行數:21,代碼來源:box_utils.py

示例10: update_critic

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def update_critic(self, obs, action, reward, next_obs, not_done, L, step):
        with torch.no_grad():
            _, policy_action, log_pi, _ = self.actor(next_obs)
            target_Q1, target_Q2 = self.critic_target(next_obs, policy_action)
            target_V = torch.min(target_Q1,
                                 target_Q2) - self.alpha.detach() * log_pi
            target_Q = reward + (not_done * self.discount * target_V)

        # get current Q estimates
        current_Q1, current_Q2 = self.critic(obs, action)
        critic_loss = F.mse_loss(current_Q1,
                                 target_Q) + F.mse_loss(current_Q2, target_Q)
        L.log('train_critic/loss', critic_loss, step)


        # Optimize the critic
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()

        self.critic.log(L, step) 
開發者ID:denisyarats,項目名稱:pytorch_sac_ae,代碼行數:23,代碼來源:sac_ae.py

示例11: huber_loss

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def huber_loss(error, delta=1.0):
    """
    Args:
        error: Torch tensor (d1,d2,...,dk)
    Returns:
        loss: Torch tensor (d1,d2,...,dk)

    x = error = pred - gt or dist(pred,gt)
    0.5 * |x|^2                 if |x|<=d
    0.5 * d^2 + d * (|x|-d)     if |x|>d
    Ref: https://github.com/charlesq34/frustum-pointnets/blob/master/models/model_util.py
    """
    abs_error = torch.abs(error)
    #quadratic = torch.min(abs_error, torch.FloatTensor([delta]))
    quadratic = torch.clamp(abs_error, max=delta)
    linear = (abs_error - quadratic)
    loss = 0.5 * quadratic**2 + delta * linear
    return loss 
開發者ID:zaiweizhang,項目名稱:H3DNet,代碼行數:20,代碼來源:nn_distance.py

示例12: poly2bbox

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def poly2bbox(polys):
    """
    without label
    :param polys: (x1, y1, ..., x4, y4) (n, 8)
    :return: boxes: (xmin, ymin, xmax, ymax) (n, 4)
    """
    n = polys.shape[0]
    xs = np.reshape(polys, (n, 4, 2))[:, :, 0]
    ys = np.reshape(polys, (n, 4, 2))[:, :, 1]

    xmin = np.min(xs, axis=1)
    ymin = np.min(ys, axis=1)
    xmax = np.max(xs, axis=1)
    ymax = np.max(ys, axis=1)

    xmin = xmin[:, np.newaxis]
    ymin = ymin[:, np.newaxis]
    xmax = xmax[:, np.newaxis]
    ymax = ymax[:, np.newaxis]

    return np.concatenate((xmin, ymin, xmax, ymax), 1) 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:23,代碼來源:transforms_rbbox.py

示例13: distance2bbox

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def distance2bbox(points, distance, max_shape=None):
    """Decode distance prediction to bounding box.

    Args:
        points (Tensor): Shape (n, 2), [x, y].
        distance (Tensor): Distance from the given point to 4
            boundaries (left, top, right, bottom).
        max_shape (tuple): Shape of the image.

    Returns:
        Tensor: Decoded bboxes.
    """
    x1 = points[:, 0] - distance[:, 0]
    y1 = points[:, 1] - distance[:, 1]
    x2 = points[:, 0] + distance[:, 2]
    y2 = points[:, 1] + distance[:, 3]
    if max_shape is not None:
        x1 = x1.clamp(min=0, max=max_shape[1] - 1)
        y1 = y1.clamp(min=0, max=max_shape[0] - 1)
        x2 = x2.clamp(min=0, max=max_shape[1] - 1)
        y2 = y2.clamp(min=0, max=max_shape[0] - 1)
    return torch.stack([x1, y1, x2, y2], -1) 
開發者ID:dingjiansw101,項目名稱:AerialDetection,代碼行數:24,代碼來源:transforms_rbbox.py

示例14: boxes_to_masks

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def boxes_to_masks(boxes, h, w, padding=0.0):
    n = boxes.shape[0]
    boxes = boxes
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    b_w = x2 - x1
    b_h = y2 - y1
    x1 = torch.clamp(x1 - 1 - b_w * padding, min=0)
    x2 = torch.clamp(x2 + 1 + b_w * padding, max=w)
    y1 = torch.clamp(y1 - 1 - b_h * padding, min=0)
    y2 = torch.clamp(y2 + 1 + b_h * padding, max=h)

    rows = torch.arange(w, device=boxes.device, dtype=x1.dtype).view(1, 1, -1).expand(n, h, w)
    cols = torch.arange(h, device=boxes.device, dtype=x1.dtype).view(1, -1, 1).expand(n, h, w)

    masks_left = rows >= x1.view(-1, 1, 1)
    masks_right = rows < x2.view(-1, 1, 1)
    masks_up = cols >= y1.view(-1, 1, 1)
    masks_down = cols < y2.view(-1, 1, 1)

    masks = masks_left * masks_right * masks_up * masks_down

    return masks 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:27,代碼來源:boxlist_ops.py

示例15: crop_by_box

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import min [as 別名]
def crop_by_box(masks, box, padding=0.0):
    n, h, w = masks.size()

    b_w = box[2] - box[0]
    b_h = box[3] - box[1]
    x1 = torch.clamp(box[0:1] - b_w * padding - 1, min=0)
    x2 = torch.clamp(box[2:3] + b_w * padding + 1, max=w - 1)
    y1 = torch.clamp(box[1:2] - b_h * padding - 1, min=0)
    y2 = torch.clamp(box[3:4] + b_h * padding + 1, max=h - 1)

    rows = torch.arange(w, device=masks.device, dtype=x1.dtype).view(1, 1, -1).expand(n, h, w)
    cols = torch.arange(h, device=masks.device, dtype=x1.dtype).view(1, -1, 1).expand(n, h, w)

    masks_left = rows >= x1.expand(n, 1, 1)
    masks_right = rows < x2.expand(n, 1, 1)
    masks_up = cols >= y1.expand(n, 1, 1)
    masks_down = cols < y2.expand(n, 1, 1)

    crop_mask = masks_left * masks_right * masks_up * masks_down
    return masks * crop_mask.float(), crop_mask 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:22,代碼來源:boxlist_ops.py


注:本文中的torch.min方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。