當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.log1p方法代碼示例

本文整理匯總了Python中torch.log1p方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.log1p方法的具體用法?Python torch.log1p怎麽用?Python torch.log1p使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.log1p方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: mu_law_encoding

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def mu_law_encoding(
        x: Tensor,
        quantization_channels: int
) -> Tensor:
    r"""Encode signal based on mu-law companding.  For more info see the
    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_

    This algorithm assumes the signal has been scaled to between -1 and 1 and
    returns a signal encoded with values from 0 to quantization_channels - 1.

    Args:
        x (Tensor): Input tensor
        quantization_channels (int): Number of channels

    Returns:
        Tensor: Input after mu-law encoding
    """
    mu = quantization_channels - 1.0
    if not x.is_floating_point():
        x = x.to(torch.float)
    mu = torch.tensor(mu, dtype=x.dtype)
    x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
    x_mu = ((x_mu + 1) / 2 * mu + 0.5).to(torch.int64)
    return x_mu 
開發者ID:pytorch,項目名稱:audio,代碼行數:26,代碼來源:functional.py

示例2: mu_law_decoding

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def mu_law_decoding(
        x_mu: Tensor,
        quantization_channels: int
) -> Tensor:
    r"""Decode mu-law encoded signal.  For more info see the
    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_

    This expects an input with values between 0 and quantization_channels - 1
    and returns a signal scaled between -1 and 1.

    Args:
        x_mu (Tensor): Input tensor
        quantization_channels (int): Number of channels

    Returns:
        Tensor: Input after mu-law decoding
    """
    mu = quantization_channels - 1.0
    if not x_mu.is_floating_point():
        x_mu = x_mu.to(torch.float)
    mu = torch.tensor(mu, dtype=x_mu.dtype)
    x = ((x_mu) / mu) * 2 - 1.0
    x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.0) / mu
    return x 
開發者ID:pytorch,項目名稱:audio,代碼行數:26,代碼來源:functional.py

示例3: get_temperature

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def get_temperature(max_value, bound=1-1e-3):
    """
    For a dataset with max value 'max_value', returns the temperature such that

        sigmoid(temperature * max_value) = bound.

    If temperature is greater than 1, returns 1.

    :param max_value:
    :param bound:
    :return:
    """
    max_value = torch.Tensor([max_value])
    bound = torch.Tensor([bound])
    temperature = min(- (1 / max_value) * (torch.log1p(-bound) - torch.log(bound)), 1)
    return temperature 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:18,代碼來源:torchutils.py

示例4: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def forward(self, x):

        self.W_sigma = torch.log1p(torch.exp(self.W_rho))
        if self.use_bias:
            self.bias_sigma = torch.log1p(torch.exp(self.bias_rho))
            bias_var = self.bias_sigma ** 2
        else:
            self.bias_sigma = bias_var = None

        act_mu = F.conv2d(
            x, self.W_mu, self.bias_mu, self.stride, self.padding, self.dilation, self.groups)
        act_var = 1e-16 + F.conv2d(
            x ** 2, self.W_sigma ** 2, bias_var, self.stride, self.padding, self.dilation, self.groups)
        act_std = torch.sqrt(act_var)

        if self.training or sample:
            eps = torch.empty(act_mu.size()).normal_(0, 1).to(self.device)
            return act_mu + act_std * eps
        else:
            return act_mu 
開發者ID:kumar-shridhar,項目名稱:PyTorch-BayesianCNN,代碼行數:22,代碼來源:BBBConv.py

示例5: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def forward(self, x, sample=True):

        self.W_sigma = torch.log1p(torch.exp(self.W_rho))
        if self.use_bias:
            self.bias_sigma = torch.log1p(torch.exp(self.bias_rho))
            bias_var = self.bias_sigma ** 2
        else:
            self.bias_sigma = bias_var = None

        act_mu = F.linear(x, self.W_mu, self.bias_mu)
        act_var = 1e-16 + F.linear(x ** 2, self.W_sigma ** 2, bias_var)
        act_std = torch.sqrt(act_var)

        if self.training or sample:
            eps = torch.empty(act_mu.size()).normal_(0, 1).to(self.device)
            return act_mu + act_std * eps
        else:
            return act_mu 
開發者ID:kumar-shridhar,項目名稱:PyTorch-BayesianCNN,代碼行數:20,代碼來源:BBBLinear.py

示例6: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def forward(self, input, sample=True):
        if self.training or sample:
            W_eps = torch.empty(self.W_mu.size()).normal_(0, 1).to(self.device)
            self.W_sigma = torch.log1p(torch.exp(self.W_rho))
            weight = self.W_mu + W_eps * self.W_sigma

            if self.use_bias:
                bias_eps = torch.empty(self.bias_mu.size()).normal_(0, 1).to(self.device)
                self.bias_sigma = torch.log1p(torch.exp(self.bias_rho))
                bias = self.bias_mu + bias_eps * self.bias_sigma
            else:
                bias = None
        else:
            weight = self.W_mu
            bias = self.bias_mu if self.use_bias else None

        return F.conv2d(input, weight, bias, self.stride, self.padding, self.dilation, self.groups) 
開發者ID:kumar-shridhar,項目名稱:PyTorch-BayesianCNN,代碼行數:19,代碼來源:BBBConv.py

示例7: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def forward(self, input, sample=True):
        if self.training or sample:
            W_eps = torch.empty(self.W_mu.size()).normal_(0, 1).to(self.device)
            self.W_sigma = torch.log1p(torch.exp(self.W_rho))
            weight = self.W_mu + W_eps * self.W_sigma

            if self.use_bias:
                bias_eps = torch.empty(self.bias_mu.size()).normal_(0, 1).to(self.device)
                self.bias_sigma = torch.log1p(torch.exp(self.bias_rho))
                bias = self.bias_mu + bias_eps * self.bias_sigma
            else:
                bias = None
        else:
            weight = self.W_mu
            bias = self.bias_mu if self.use_bias else None

        return F.linear(input, weight, bias) 
開發者ID:kumar-shridhar,項目名稱:PyTorch-BayesianCNN,代碼行數:19,代碼來源:BBBLinear.py

示例8: log1p

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def log1p(x, out=None):
    """
    Return the natural logarithm of one plus the input array, element-wise.

    Parameters
    ----------
    x : ht.DNDarray
        The value for which to compute the logarithm.
    out : ht.DNDarray or None, optional
        A location in which to store the results. If provided, it must have a broadcastable shape. If not provided
        or set to None, a fresh tensor is allocated.

    Returns
    -------
    logarithms : ht.DNDarray
        A tensor of the same shape as x, containing the positive logarithms plus one of each element in this tensor.
        Negative input elements are returned as nan. If out was provided, logarithms is a reference to it.

    Examples
    --------
    >>> ht.log1p(ht.arange(5))
    array([0., 0.69314718, 1.09861229, 1.38629436, 1.60943791])
    """
    return operations.__local_op(torch.log1p, x, out) 
開發者ID:helmholtz-analytics,項目名稱:heat,代碼行數:26,代碼來源:exponential.py

示例9: heatmap_loss

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def heatmap_loss(scores, labels, pos_weight=100):
    labels = labels.float()
    # loss = F.binary_cross_entropy_with_logits(scores, labels, reduction='none')
    loss = F.l1_loss(scores, labels, reduction='none')
    weighted = loss * (1. + (pos_weight - 1.) * labels)

    return weighted.sum()


# def uncertainty_loss(logvar, sqr_dists):
#     sqr_dists = sqr_dists.clamp(min=1.+1e-6)
#     c = (1 + torch.log(sqr_dists)) / sqr_dists
#     loss = torch.log1p(logvar.exp()) / sqr_dists + torch.sigmoid(-logvar) - c
#     print('dists', float(sqr_dists.min()), float(sqr_dists.max()))
#     print('logvar', float(logvar.min()), float(logvar.max()))
#     print('loss', float(loss.min()), float(loss.max()))

#     def hook(grad):
#         print('grad', float(grad.min()), float(grad.max()), float(grad.sum()))
#     logvar.register_hook(hook)

#     return loss.mean() 
開發者ID:tom-roddick,項目名稱:oft,代碼行數:24,代碼來源:loss.py

示例10: semantic_loss_exactly_one

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def semantic_loss_exactly_one(log_prob):
    """Semantic loss to encourage the multinomial probability to be "peaked",
    i.e. only one class is picked.
    The loss has the form -log sum_{i=1}^n p_i prod_{j=1, j!=i}^n (1 - p_j).
    Paper: http://web.cs.ucla.edu/~guyvdb/papers/XuICML18.pdf
    Code: https://github.com/UCLA-StarAI/Semantic-Loss/blob/master/semi_supervised/semantic.py
    Parameters:
        log_prob: log probability of a multinomial distribution, shape (batch_size, n)
    Returns:
        semantic_loss: shape (batch_size)
    """
    _, argmaxes = torch.max(log_prob, dim=-1)
    # Compute log(1-p) separately for the largest probabilities, by doing
    # logsumexp on the rest of the log probabilities.
    log_prob_temp = log_prob.clone()
    log_prob_temp[range(log_prob.shape[0]), argmaxes] = torch.tensor(float('-inf'))
    log_1mprob_max = torch.logsumexp(log_prob_temp, dim=-1)
    # Compute log(1-p) normally for the rest of the probabilities
    log_1mprob = torch.log1p(-torch.exp(log_prob_temp))
    log_1mprob[range(log_prob.shape[0]), argmaxes] = log_1mprob_max
    loss = -(log_1mprob.sum(dim=-1) + torch.logsumexp(log_prob - log_1mprob, dim=-1))
    return loss 
開發者ID:HazyResearch,項目名稱:learning-circuits,代碼行數:24,代碼來源:semantic_loss.py

示例11: mulaw_quantize

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def mulaw_quantize(x, quantization_channels=256):
    """Encode signal based on mu-law companding.  For more info see the
    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_

    This algorithm assumes the signal has been scaled to between -1 and 1 and
    returns a signal encoded with values from 0 to quantization_channels - 1

    Args:
        quantization_channels (int): Number of channels. default: 256

    """
    mu = quantization_channels - 1
    if isinstance(x, np.ndarray):
        x_mu = np.sign(x) * np.log1p(mu * np.abs(x)) / np.log1p(mu)
        x_mu = ((x_mu + 1) / 2 * mu + 0.5).astype(int)
    elif isinstance(x, (torch.Tensor, torch.LongTensor)):

        if isinstance(x, torch.LongTensor):
            x = x.float()
        mu = torch.FloatTensor([mu])
        x_mu = torch.sign(x) * torch.log1p(mu * torch.abs(x)) / torch.log1p(mu)
        x_mu = ((x_mu + 1) / 2 * mu + 0.5).long()
    return x_mu 
開發者ID:G-Wang,項目名稱:WaveRNN-Pytorch,代碼行數:25,代碼來源:utils.py

示例12: inv_mulaw_quantize

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def inv_mulaw_quantize(x_mu, quantization_channels=256, cuda=False):
    """Decode mu-law encoded signal.  For more info see the
    `Wikipedia Entry <https://en.wikipedia.org/wiki/%CE%9C-law_algorithm>`_

    This expects an input with values between 0 and quantization_channels - 1
    and returns a signal scaled between -1 and 1.

    Args:
        quantization_channels (int): Number of channels. default: 256

    """
    mu = quantization_channels - 1.
    if isinstance(x_mu, np.ndarray):
        x = ((x_mu) / mu) * 2 - 1.
        x = np.sign(x) * (np.exp(np.abs(x) * np.log1p(mu)) - 1.) / mu
    elif isinstance(x_mu, (torch.Tensor, torch.LongTensor)):
        if isinstance(x_mu, (torch.LongTensor, torch.cuda.LongTensor)):
            x_mu = x_mu.float()
        if cuda:
            mu = (torch.FloatTensor([mu])).cuda()
        else:
            mu = torch.FloatTensor([mu])
        x = ((x_mu) / mu) * 2 - 1.
        x = torch.sign(x) * (torch.exp(torch.abs(x) * torch.log1p(mu)) - 1.) / mu
    return x 
開發者ID:G-Wang,項目名稱:WaveRNN-Pytorch,代碼行數:27,代碼來源:utils.py

示例13: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def forward(ctx, scale, c, dim):
        scale = scale.double()
        c = c.double()
        ctx.scale = scale.clone().detach()
        ctx.c = c.clone().detach()
        ctx.dim = dim

        device = scale.device
        output = .5 * (Constants.logpi - Constants.log2) + scale.log() -(int(dim) - 1) * (c.log() / 2 + Constants.log2)
        dim = torch.tensor(int(dim)).to(device).double()

        k_float = rexpand(torch.arange(int(dim)), *scale.size()).double().to(device)
        s = torch.lgamma(dim) - torch.lgamma(k_float + 1) - torch.lgamma(dim - k_float) \
            + (dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2) / 2 \
            + torch.log1p(torch.erf((dim - 1 - 2 * k_float) * c.sqrt() * scale / math.sqrt(2)))
        signs = torch.tensor([1., -1.]).double().to(device).repeat(((int(dim)+1) // 2)*2)[:int(dim)]
        signs = rexpand(signs, *scale.size())
        ctx.log_sum_term = log_sum_exp_signs(s, signs, dim=0)
        output = output + ctx.log_sum_term

        return output.float() 
開發者ID:emilemathieu,項目名稱:pvae,代碼行數:23,代碼來源:hyperbolic_radius.py

示例14: mean

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def mean(self):
        c = self.c.double()
        scale = self.scale.double()
        dim = torch.tensor(int(self.dim)).double().to(self.device)
        signs = torch.tensor([1., -1.]).double().to(self.device).repeat(((self.dim+1) // 2)*2)[:self.dim].unsqueeze(-1).unsqueeze(-1).expand(self.dim, *self.scale.size())
        
        k_float = rexpand(torch.arange(self.dim), *self.scale.size()).double().to(self.device)
        s2 = torch.lgamma(dim) - torch.lgamma(k_float + 1) - torch.lgamma(dim - k_float) \
                + (dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2) / 2 \
                + torch.log1p(torch.erf((dim - 1 - 2 * k_float) * c.sqrt() * scale / math.sqrt(2)))
        S2 = log_sum_exp_signs(s2, signs, dim=0)

        log_arg = (dim - 1 - 2 * k_float) * c.sqrt() * scale.pow(2) * (1 + torch.erf((dim - 1 - 2 * k_float) * c.sqrt() * scale / math.sqrt(2))) + \
                torch.exp(-(dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2) / 2) * scale * math.sqrt(2 / math.pi)
        log_arg_signs = torch.sign(log_arg)
        s1 = torch.lgamma(dim) - torch.lgamma(k_float + 1) - torch.lgamma(dim - k_float) \
                + (dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2) / 2 \
                + torch.log(log_arg_signs * log_arg)
        S1 = log_sum_exp_signs(s1, signs * log_arg_signs, dim=0)

        output = torch.exp(S1 - S2)
        return output.float() 
開發者ID:emilemathieu,項目名稱:pvae,代碼行數:24,代碼來源:hyperbolic_radius.py

示例15: variance

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import log1p [as 別名]
def variance(self):
        c = self.c.double()
        scale = self.scale.double()
        dim = torch.tensor(int(self.dim)).double().to(self.device)
        signs = torch.tensor([1., -1.]).double().to(self.device).repeat(((int(dim)+1) // 2)*2)[:int(dim)].unsqueeze(-1).unsqueeze(-1).expand(int(dim), *self.scale.size())

        k_float = rexpand(torch.arange(self.dim), *self.scale.size()).double().to(self.device)
        s2 = torch.lgamma(dim) - torch.lgamma(k_float + 1) - torch.lgamma(dim - k_float) \
                + (dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2) / 2 \
                + torch.log1p(torch.erf((dim - 1 - 2 * k_float) * c.sqrt() * scale / math.sqrt(2)))
        S2 = log_sum_exp_signs(s2, signs, dim=0)

        log_arg = (1 + (dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2)) * (1 + torch.erf((dim - 1 - 2 * k_float) * c.sqrt() * scale / math.sqrt(2))) + \
               (dim - 1 - 2 * k_float) * c.sqrt() * torch.exp(-(dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2) / 2) * scale * math.sqrt(2 / math.pi)
        log_arg_signs = torch.sign(log_arg)
        s1 = torch.lgamma(dim) - torch.lgamma(k_float + 1) - torch.lgamma(dim - k_float) \
                + (dim - 1 - 2 * k_float).pow(2) * c * scale.pow(2) / 2 \
                + 2 * scale.log() \
                + torch.log(log_arg_signs * log_arg)
        S1 = log_sum_exp_signs(s1, signs * log_arg_signs, dim=0)

        output = torch.exp(S1 - S2)
        output = output.float() - self.mean.pow(2)
        return output 
開發者ID:emilemathieu,項目名稱:pvae,代碼行數:26,代碼來源:hyperbolic_radius.py


注:本文中的torch.log1p方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。