當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.isinf方法代碼示例

本文整理匯總了Python中torch.isinf方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.isinf方法的具體用法?Python torch.isinf怎麽用?Python torch.isinf使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.isinf方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_forward(self):
        batch_size = 10
        in_shape = [2, 3, 4]
        out_shape = [5, 6]
        inputs = torch.randn(batch_size, *in_shape)

        for hidden_sizes in [[20], [20, 30], [20, 30, 40]]:
            with self.subTest(hidden_sizes=hidden_sizes):
                model = mlp.MLP(
                    in_shape=in_shape,
                    out_shape=out_shape,
                    hidden_sizes=hidden_sizes,
                )
                outputs = model(inputs)
                self.assertIsInstance(outputs, torch.Tensor)
                self.assertEqual(outputs.shape, torch.Size([batch_size] + out_shape))
                self.assertFalse(torch.isnan(outputs).any())
                self.assertFalse(torch.isinf(outputs).any())

        with self.assertRaises(Exception):
            mlp.MLP(
                in_shape=in_shape,
                out_shape=out_shape,
                hidden_sizes=[],
            ) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:27,代碼來源:mlp_test.py

示例2: test_sample

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_sample(self):
        num_samples = 10
        context_size = 20
        input_shape = [2, 3, 4]
        context_shape = [5, 6]
        dist = normal.StandardNormal(input_shape)
        maybe_context = torch.randn(context_size, *context_shape)
        for context in [None, maybe_context]:
            with self.subTest(context=context):
                samples = dist.sample(num_samples, context=context)
                self.assertIsInstance(samples, torch.Tensor)
                self.assertFalse(torch.isnan(samples).any())
                self.assertFalse(torch.isinf(samples).any())
                if context is None:
                    self.assertEqual(samples.shape, torch.Size([num_samples] + input_shape))
                else:
                    self.assertEqual(
                        samples.shape, torch.Size([context_size, num_samples] + input_shape)) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:20,代碼來源:normal_test.py

示例3: test_mean

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_mean(self):
        context_size = 20
        input_shape = [2, 3, 4]
        context_shape = [5, 6]
        dist = normal.StandardNormal(input_shape)
        maybe_context = torch.randn(context_size, *context_shape)
        for context in [None, maybe_context]:
            with self.subTest(context=context):
                means = dist.mean(context=context)
                self.assertIsInstance(means, torch.Tensor)
                self.assertFalse(torch.isnan(means).any())
                self.assertFalse(torch.isinf(means).any())
                self.assertEqual(means, torch.zeros_like(means))
                if context is None:
                    self.assertEqual(means.shape, torch.Size(input_shape))
                else:
                    self.assertEqual(means.shape, torch.Size([context_size] + input_shape)) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:19,代碼來源:normal_test.py

示例4: test_sample_and_log_prob_with_context

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_sample_and_log_prob_with_context(self):
        num_samples = 10
        context_size = 20
        input_shape = [2, 3, 4]
        context_shape = [2, 3, 4]

        dist = discrete.ConditionalIndependentBernoulli(input_shape)
        context = torch.randn(context_size, *context_shape)
        samples, log_prob = dist.sample_and_log_prob(num_samples, context=context)

        self.assertIsInstance(samples, torch.Tensor)
        self.assertIsInstance(log_prob, torch.Tensor)

        self.assertEqual(samples.shape, torch.Size([context_size, num_samples] + input_shape))
        self.assertEqual(log_prob.shape, torch.Size([context_size, num_samples]))

        self.assertFalse(torch.isnan(log_prob).any())
        self.assertFalse(torch.isinf(log_prob).any())
        self.assert_tensor_less_equal(log_prob, 0.0)

        self.assertFalse(torch.isnan(samples).any())
        self.assertFalse(torch.isinf(samples).any())
        binary = (samples == 1.0) | (samples == 0.0)
        self.assertEqual(binary, torch.ones_like(binary)) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:26,代碼來源:discrete_test.py

示例5: test_stochastic_elbo

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_stochastic_elbo(self):
        batch_size = 10
        input_shape = [2, 3, 4]
        latent_shape = [5, 6]

        prior = distributions.StandardNormal(latent_shape)
        approximate_posterior = distributions.StandardNormal(latent_shape)
        likelihood = distributions.StandardNormal(input_shape)
        vae = base.VariationalAutoencoder(prior, approximate_posterior, likelihood)

        inputs = torch.randn(batch_size, *input_shape)
        for num_samples in [1, 10, 100]:
            with self.subTest(num_samples=num_samples):
                elbo = vae.stochastic_elbo(inputs, num_samples)
                self.assertIsInstance(elbo, torch.Tensor)
                self.assertFalse(torch.isnan(elbo).any())
                self.assertFalse(torch.isinf(elbo).any())
                self.assertEqual(elbo.shape, torch.Size([batch_size])) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:20,代碼來源:base_test.py

示例6: test_sample

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_sample(self):
        num_samples = 10
        input_shape = [2, 3, 4]
        latent_shape = [5, 6]

        prior = distributions.StandardNormal(latent_shape)
        approximate_posterior = distributions.StandardNormal(latent_shape)
        likelihood = distributions.StandardNormal(input_shape)
        vae = base.VariationalAutoencoder(prior, approximate_posterior, likelihood)

        for mean in [True, False]:
            with self.subTest(mean=mean):
                samples = vae.sample(num_samples, mean=mean)
                self.assertIsInstance(samples, torch.Tensor)
                self.assertFalse(torch.isnan(samples).any())
                self.assertFalse(torch.isinf(samples).any())
                self.assertEqual(samples.shape, torch.Size([num_samples] + input_shape)) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:19,代碼來源:base_test.py

示例7: test_encode

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_encode(self):
        batch_size = 20
        input_shape = [2, 3, 4]
        latent_shape = [5, 6]
        inputs = torch.randn(batch_size, *input_shape)

        prior = distributions.StandardNormal(latent_shape)
        approximate_posterior = distributions.StandardNormal(latent_shape)
        likelihood = distributions.StandardNormal(input_shape)
        vae = base.VariationalAutoencoder(prior, approximate_posterior, likelihood)

        for num_samples in [None, 1, 10]:
            with self.subTest(num_samples=num_samples):
                encodings = vae.encode(inputs, num_samples)
                self.assertIsInstance(encodings, torch.Tensor)
                self.assertFalse(torch.isnan(encodings).any())
                self.assertFalse(torch.isinf(encodings).any())
                if num_samples is None:
                    self.assertEqual(encodings.shape, torch.Size([batch_size] + latent_shape))
                else:
                    self.assertEqual(
                        encodings.shape, torch.Size([batch_size, num_samples] + latent_shape)) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:24,代碼來源:base_test.py

示例8: test_reconstruct

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def test_reconstruct(self):
        batch_size = 20
        input_shape = [2, 3, 4]
        latent_shape = [5, 6]
        inputs = torch.randn(batch_size, *input_shape)

        prior = distributions.StandardNormal(latent_shape)
        approximate_posterior = distributions.StandardNormal(latent_shape)
        likelihood = distributions.StandardNormal(input_shape)
        vae = base.VariationalAutoencoder(prior, approximate_posterior, likelihood)

        for mean in [True, False]:
            for num_samples in [None, 1, 10]:
                with self.subTest(mean=mean, num_samples=num_samples):
                    recons = vae.reconstruct(inputs, num_samples=num_samples, mean=mean)
                    self.assertIsInstance(recons, torch.Tensor)
                    self.assertFalse(torch.isnan(recons).any())
                    self.assertFalse(torch.isinf(recons).any())
                    if num_samples is None:
                        self.assertEqual(recons.shape, torch.Size([batch_size] + input_shape))
                    else:
                        self.assertEqual(
                            recons.shape, torch.Size([batch_size, num_samples] + input_shape)) 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:25,代碼來源:base_test.py

示例9: normalize_feature

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def normalize_feature(mx):
    """Row-normalize sparse matrix

    Parameters
    ----------
    mx : scipy.sparse.csr_matrix
        matrix to be normalized

    Returns
    -------
    scipy.sprase.lil_matrix
        normalized matrix
    """
    if type(mx) is not sp.lil.lil_matrix:
        mx = mx.tolil()
    rowsum = np.array(mx.sum(1))
    r_inv = np.power(rowsum, -1).flatten()
    r_inv[np.isinf(r_inv)] = 0.
    r_mat_inv = sp.diags(r_inv)
    mx = r_mat_inv.dot(mx)
    return mx 
開發者ID:DSE-MSU,項目名稱:DeepRobust,代碼行數:23,代碼來源:utils.py

示例10: normalize_adj_tensor

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def normalize_adj_tensor(adj, sparse=False):
    """Normalize adjacency tensor matrix.
    """
    device = torch.device("cuda" if adj.is_cuda else "cpu")
    if sparse:
        # TODO if this is too slow, uncomment the following code,
        # but you need to install torch_scatter
        # return normalize_sparse_tensor(adj)
        adj = to_scipy(adj)
        mx = normalize_adj(adj)
        return sparse_mx_to_torch_sparse_tensor(mx).to(device)
    else:
        mx = adj + torch.eye(adj.shape[0]).to(device)
        rowsum = mx.sum(1)
        r_inv = rowsum.pow(-1/2).flatten()
        r_inv[torch.isinf(r_inv)] = 0.
        r_mat_inv = torch.diag(r_inv)
        mx = r_mat_inv @ mx
        mx = mx @ r_mat_inv
    return mx 
開發者ID:DSE-MSU,項目名稱:DeepRobust,代碼行數:22,代碼來源:utils.py

示例11: degree_normalize_adj_tensor

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def degree_normalize_adj_tensor(adj, sparse=True):
    """degree_normalize_adj_tensor.
    """

    device = torch.device("cuda" if adj.is_cuda else "cpu")
    if sparse:
        # return  degree_normalize_sparse_tensor(adj)
        adj = to_scipy(adj)
        mx = degree_normalize_adj(adj)
        return sparse_mx_to_torch_sparse_tensor(mx).to(device)
    else:
        mx = adj + torch.eye(adj.shape[0]).to(device)
        rowsum = mx.sum(1)
        r_inv = rowsum.pow(-1).flatten()
        r_inv[torch.isinf(r_inv)] = 0.
        r_mat_inv = torch.diag(r_inv)
        mx = r_mat_inv @ mx
    return mx 
開發者ID:DSE-MSU,項目名稱:DeepRobust,代碼行數:20,代碼來源:utils.py

示例12: feature_smoothing

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def feature_smoothing(self, adj, X):
        adj = (adj.t() + adj)/2
        rowsum = adj.sum(1)
        r_inv = rowsum.flatten()
        D = torch.diag(r_inv)
        L = D - adj

        r_inv = r_inv  + 1e-3
        r_inv = r_inv.pow(-1/2).flatten()
        r_inv[torch.isinf(r_inv)] = 0.
        r_mat_inv = torch.diag(r_inv)
        # L = r_mat_inv @ L
        L = r_mat_inv @ L @ r_mat_inv

        XLXT = torch.matmul(torch.matmul(X.t(), L), X)
        loss_smooth_feat = torch.trace(XLXT)
        return loss_smooth_feat 
開發者ID:DSE-MSU,項目名稱:DeepRobust,代碼行數:19,代碼來源:prognn.py

示例13: _validate

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def _validate(self):
        if self.means.dim() != 2:
            raise ValueError("means should be 2D (first dimension batch-size)")
        if self.covs.dim() != 3:
            raise ValueError("covs should be 3D (first dimension batch-size)")
        if torch.isinf(self.means).any():
            raise ValueError("Infs in `means`.")
        if torch.isinf(self.covs).any():
            raise ValueError("Infs in `covs`.")
        if torch.isnan(self.means).any():
            raise ValueError("nans in `means`.")
        if torch.isnan(self.covs).any():
            raise ValueError("nans in `covs`.")
        if self.covs.shape[0] != self.means.shape[0]:
            raise ValueError("The batch-size (1st dimension) of cov doesn't match that of mean.")
        if self.covs.shape[1] != self.covs.shape[2]:
            raise ValueError("The cov should be symmetric in the last two dimensions.")
        if self.covs.shape[1] != self.means.shape[1]:
            raise ValueError("The state-size (2nd/3rd dimension) of cov doesn't match that of mean.")
        if self.last_measured.shape[0] != self.num_groups or self.last_measured.dim() != 1:
            raise ValueError(f"`last_measured` should be 1D tensor w/length of {self.num_groups:,}.") 
開發者ID:strongio,項目名稱:torch-kalman,代碼行數:23,代碼來源:base.py

示例14: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def forward(self, inputs):
    while True:
      gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
      logits  = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
      probs   = nn.functional.softmax(logits, dim=1)
      index   = probs.max(-1, keepdim=True)[1]
      one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0)
      hardwts = one_h - probs.detach() + probs
      if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
        continue
      else: break

    feature = self.stem(inputs)
    for i, cell in enumerate(self.cells):
      if isinstance(cell, SearchCell):
        feature = cell.forward_gdas(feature, hardwts, index)
      else:
        feature = cell(feature)
    out = self.lastact(feature)
    out = self.global_pooling( out )
    out = out.view(out.size(0), -1)
    logits = self.classifier(out)

    return out, logits 
開發者ID:D-X-Y,項目名稱:AutoDL-Projects,代碼行數:26,代碼來源:search_model_gdas.py

示例15: select2withP

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import isinf [as 別名]
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
  if tau <= 0:
    new_logits = logits
    probs = nn.functional.softmax(new_logits, dim=1)
  else       :
    while True: # a trick to avoid the gumbels bug
      gumbels = -torch.empty_like(logits).exponential_().log()
      new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
      probs = nn.functional.softmax(new_logits, dim=1)
      if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break

  if just_prob: return probs

  #with torch.no_grad(): # add eps for unexpected torch error
  #  probs = nn.functional.softmax(new_logits, dim=1)
  #  selected_index = torch.multinomial(probs + eps, 2, False)
  with torch.no_grad(): # add eps for unexpected torch error
    probs          = probs.cpu()
    selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
  selected_logit = torch.gather(new_logits, 1, selected_index)
  selcted_probs  = nn.functional.softmax(selected_logit, dim=1)
  return selected_index, selcted_probs 
開發者ID:D-X-Y,項目名稱:AutoDL-Projects,代碼行數:24,代碼來源:SoftSelect.py


注:本文中的torch.isinf方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。