當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.int32方法代碼示例

本文整理匯總了Python中torch.int32方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.int32方法的具體用法?Python torch.int32怎麽用?Python torch.int32使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.int32方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: normalize_wav

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def normalize_wav(tensor: torch.Tensor) -> torch.Tensor:
    if tensor.dtype == torch.float32:
        pass
    elif tensor.dtype == torch.int32:
        tensor = tensor.to(torch.float32)
        tensor[tensor > 0] /= 2147483647.
        tensor[tensor < 0] /= 2147483648.
    elif tensor.dtype == torch.int16:
        tensor = tensor.to(torch.float32)
        tensor[tensor > 0] /= 32767.
        tensor[tensor < 0] /= 32768.
    elif tensor.dtype == torch.uint8:
        tensor = tensor.to(torch.float32) - 128
        tensor[tensor > 0] /= 127.
        tensor[tensor < 0] /= 128.
    return tensor 
開發者ID:pytorch,項目名稱:audio,代碼行數:18,代碼來源:wav_utils.py

示例2: generate_iters_indices

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def generate_iters_indices(self, num_of_iters):
        from_iter = len(self.iter_indices_per_iteration)
        for iter_num in range(from_iter, from_iter+num_of_iters):

            # Get random number of samples per task (according to iteration distribution)
            tsks = Categorical(probs=self.tasks_probs_over_iterations[iter_num]).sample(torch.Size([self.samples_in_batch]))
            # Generate samples indices for iter_num
            iter_indices = torch.zeros(0, dtype=torch.int32)
            for task_idx in range(self.num_of_tasks):
                if self.tasks_probs_over_iterations[iter_num][task_idx] > 0:
                    num_samples_from_task = (tsks == task_idx).sum().item()
                    self.samples_distribution_over_time[task_idx].append(num_samples_from_task)
                    # Randomize indices for each task (to allow creation of random task batch)
                    tasks_inner_permute = np.random.permutation(len(self.tasks_samples_indices[task_idx]))
                    rand_indices_of_task = tasks_inner_permute[:num_samples_from_task]
                    iter_indices = torch.cat([iter_indices, self.tasks_samples_indices[task_idx][rand_indices_of_task]])
                else:
                    self.samples_distribution_over_time[task_idx].append(0)
            self.iter_indices_per_iteration.append(iter_indices.tolist()) 
開發者ID:igolan,項目名稱:bgd,代碼行數:21,代碼來源:datasets.py

示例3: compute_logits

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def compute_logits(self, token_ids: torch.Tensor) -> torch.Tensor:
        """
        Implements a language model, where each output is conditional on the current
        input and inputs processed so far.

        Args:
            inputs: int32 tensor of shape [B, T], storing integer IDs of tokens.

        Returns:
            torch.float32 tensor of shape [B, T, V], storing the distribution over output symbols
            for each timestep for each batch element.
        """
        # TODO 5# 1) Embed tokens
        # TODO 5# 2) Run RNN on embedded tokens
        # TODO 5# 3) Project RNN outputs onto the vocabulary to obtain logits.
        return rnn_output_logits 
開發者ID:microsoft,項目名稱:machine-learning-for-programming-samples,代碼行數:18,代碼來源:model_torch.py

示例4: test_one_hot

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def test_one_hot(self):
        """
        Tests a torch one hot function.
        """
        if get_backend() == "pytorch":
            # Flat action array.
            inputs = torch.tensor([0, 1], dtype=torch.int32)
            one_hot = pytorch_one_hot(inputs, depth=2)

            expected = torch.tensor([[1., 0.], [0., 1.]])
            recursive_assert_almost_equal(one_hot, expected)

            # Container space.
            inputs = torch.tensor([[0, 3, 2],[1, 2, 0]], dtype=torch.int32)
            one_hot = pytorch_one_hot(inputs, depth=4)

            expected = torch.tensor([[[1, 0, 0, 0],[0, 0, 0, 1],[0, 0, 1, 0]],[[0, 1, 0, 0],[0, 0, 1, 0],[1, 0, 0, 0,]]],
                                    dtype=torch.int32)
            recursive_assert_almost_equal(one_hot, expected) 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:21,代碼來源:test_pytorch_util.py

示例5: _graph_fn_call

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def _graph_fn_call(self, inputs):
        if self.backend == "python" or get_backend() == "python":
            if isinstance(inputs, list):
                inputs = np.asarray(inputs)
            return inputs.astype(dtype=util.convert_dtype(self.to_dtype, to="np"))
        elif get_backend() == "pytorch":
            torch_dtype = util.convert_dtype(self.to_dtype, to="pytorch")
            if torch_dtype == torch.float or torch.float32:
                return inputs.float()
            elif torch_dtype == torch.int or torch.int32:
                return inputs.int()
            elif torch_dtype == torch.uint8:
                return inputs.byte()
        elif get_backend() == "tf":
            in_space = get_space_from_op(inputs)
            to_dtype = util.convert_dtype(self.to_dtype, to="tf")
            if inputs.dtype != to_dtype:
                ret = tf.cast(x=inputs, dtype=to_dtype)
                if in_space.has_batch_rank is True:
                    ret._batch_rank = 0 if in_space.time_major is False else 1
                if in_space.has_time_rank is True:
                    ret._time_rank = 0 if in_space.time_major is True else 1
                return ret
            else:
                return inputs 
開發者ID:rlgraph,項目名稱:rlgraph,代碼行數:27,代碼來源:convert_type.py

示例6: torch_dtype_to_np_dtype

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def torch_dtype_to_np_dtype(dtype):
    dtype_dict = {
            torch.bool    : np.dtype(np.bool),
            torch.uint8   : np.dtype(np.uint8),
            torch.int8    : np.dtype(np.int8),
            torch.int16   : np.dtype(np.int16),
            torch.short   : np.dtype(np.int16),
            torch.int32   : np.dtype(np.int32),
            torch.int     : np.dtype(np.int32),
            torch.int64   : np.dtype(np.int64),
            torch.long    : np.dtype(np.int64),
            torch.float16 : np.dtype(np.float16),
            torch.half    : np.dtype(np.float16),
            torch.float32 : np.dtype(np.float32),
            torch.float   : np.dtype(np.float32),
            torch.float64 : np.dtype(np.float64),
            torch.double  : np.dtype(np.float64),
            }
    return dtype_dict[dtype]


# ---------------------- InferenceEngine internal types ------------------------ 
開發者ID:pfnet-research,項目名稱:chainer-compiler,代碼行數:24,代碼來源:types.py

示例7: certify_inputs

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def certify_inputs(log_probs, labels, lengths, label_lengths):
    check_type(log_probs, torch.float32, "log_probs")
    check_type(labels, torch.int32, "labels")
    check_type(label_lengths, torch.int32, "label_lengths")
    check_type(lengths, torch.int32, "lengths")
    check_contiguous(labels, "labels")
    check_contiguous(label_lengths, "label_lengths")
    check_contiguous(lengths, "lengths")

    if lengths.shape[0] != log_probs.shape[0]:
        raise ValueError("must have a length per example.")
    if label_lengths.shape[0] != log_probs.shape[0]:
        raise ValueError("must have a label length per example.")

    check_dim(log_probs, 4, "log_probs")
    check_dim(labels, 1, "labels")
    check_dim(lengths, 1, "lenghts")
    check_dim(label_lengths, 1, "label_lenghts")
    max_T = torch.max(lengths)
    max_U = torch.max(label_lengths)
    T, U = log_probs.shape[1:3]
    if T != max_T:
        raise ValueError("Input length mismatch")
    if U != max_U + 1:
        raise ValueError("Output length mismatch") 
開發者ID:awni,項目名稱:transducer,代碼行數:27,代碼來源:transducer.py

示例8: make_numpy_ndarray

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def make_numpy_ndarray(**kwargs):
    np_array = numpy.random.random((2, 2))

    def compare(detailed, original):
        """Compare numpy arrays"""
        assert numpy.array_equal(detailed, original)
        return True

    return [
        {
            "value": np_array,
            "simplified": (
                CODE[type(np_array)],
                (
                    np_array.tobytes(),  # (bytes) serialized bin
                    (CODE[tuple], (2, 2)),  # (tuple) shape
                    (CODE[str], (b"float64",)),  # (str) dtype.name
                ),
            ),
            "cmp_detailed": compare,
        }
    ]


# numpy.float32, numpy.float64, numpy.int32, numpy.int64 
開發者ID:OpenMined,項目名稱:PySyft,代碼行數:27,代碼來源:serde_helpers.py

示例9: conv2d_rounding

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def conv2d_rounding(A, B):
    """
    chunked conv2d which converts datatypes and filters values,
    converting > 127 to 127 and < -128 to -128
    """
    # C = np.zeros((N, P, Q, K)).astype("int32")  # output
    # for b in range(N):
    #     for p in range(P):
    #         for q in range(Q):
    #             for k in range(K):
    #                 for rc in range(RC):
    #                     for rr in range(R):
    #                         for rs in range(S):
    #                             C[b, p, q, k] += A[b, p+rr, q+rs, rc] * B[rr, rs, rc, k]
    import torch
    A = torch.tensor(A, dtype=torch.int32).permute(0, 3, 1, 2)
    B = torch.tensor(B, dtype=torch.int32).permute(3, 2, 0, 1)
    C = torch.nn.functional.conv2d(A, B, bias=None, stride=1, padding=0, dilation=1, groups=1)
    C = C.permute(0, 2, 3, 1).numpy()
    C[C > 127] = 127
    C[C < -128] = -128
    return C.astype(np.int8) 
開發者ID:KnowingNothing,項目名稱:FlexTensor,代碼行數:24,代碼來源:gemmini-conv2d-3x3-nhwc-spike.py

示例10: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def __init__(
        self, func, y0, rtol, atol, first_step=None, safety=0.9, ifactor=10.0, dfactor=0.2, max_num_steps=2**31 - 1,
        **unused_kwargs
    ):
        _handle_unused_kwargs(self, unused_kwargs)
        del unused_kwargs

        self.func = func
        self.y0 = y0
        self.rtol = rtol if _is_iterable(rtol) else [rtol] * len(y0)
        self.atol = atol if _is_iterable(atol) else [atol] * len(y0)
        self.first_step = first_step
        self.safety = _convert_to_tensor(safety, dtype=torch.float64, device=y0[0].device)
        self.ifactor = _convert_to_tensor(ifactor, dtype=torch.float64, device=y0[0].device)
        self.dfactor = _convert_to_tensor(dfactor, dtype=torch.float64, device=y0[0].device)
        self.max_num_steps = _convert_to_tensor(max_num_steps, dtype=torch.int32, device=y0[0].device) 
開發者ID:rtqichen,項目名稱:torchdiffeq,代碼行數:18,代碼來源:bosh3.py

示例11: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def __init__(
        self, func, y0, rtol, atol, first_step=None, safety=0.9, ifactor=10.0, dfactor=0.2, max_num_steps=2**31 - 1,
        **unused_kwargs
    ):
        _handle_unused_kwargs(self, unused_kwargs)
        del unused_kwargs

        self.func = func
        self.y0 = y0
        self.rtol = rtol
        self.atol = atol
        self.first_step = first_step
        self.safety = _convert_to_tensor(safety, dtype=torch.float64, device=y0[0].device)
        self.ifactor = _convert_to_tensor(ifactor, dtype=torch.float64, device=y0[0].device)
        self.dfactor = _convert_to_tensor(dfactor, dtype=torch.float64, device=y0[0].device)
        self.max_num_steps = _convert_to_tensor(max_num_steps, dtype=torch.int32, device=y0[0].device) 
開發者ID:rtqichen,項目名稱:torchdiffeq,代碼行數:18,代碼來源:tsit5.py

示例12: create_buffers

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def create_buffers(flags, obs_shape, num_actions) -> Buffers:
    T = flags.unroll_length
    specs = dict(
        frame=dict(size=(T + 1, *obs_shape), dtype=torch.uint8),
        reward=dict(size=(T + 1,), dtype=torch.float32),
        done=dict(size=(T + 1,), dtype=torch.bool),
        episode_return=dict(size=(T + 1,), dtype=torch.float32),
        episode_step=dict(size=(T + 1,), dtype=torch.int32),
        policy_logits=dict(size=(T + 1, num_actions), dtype=torch.float32),
        baseline=dict(size=(T + 1,), dtype=torch.float32),
        last_action=dict(size=(T + 1,), dtype=torch.int64),
        action=dict(size=(T + 1,), dtype=torch.int64),
    )
    buffers: Buffers = {key: [] for key in specs}
    for _ in range(flags.num_buffers):
        for key in buffers:
            buffers[key].append(torch.empty(**specs[key]).share_memory_())
    return buffers 
開發者ID:facebookresearch,項目名稱:torchbeast,代碼行數:20,代碼來源:monobeast.py

示例13: initial

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def initial(self):
        initial_reward = torch.zeros(1, 1)
        # This supports only single-tensor actions ATM.
        initial_last_action = torch.zeros(1, 1, dtype=torch.int64)
        self.episode_return = torch.zeros(1, 1)
        self.episode_step = torch.zeros(1, 1, dtype=torch.int32)
        initial_done = torch.ones(1, 1, dtype=torch.uint8)
        initial_frame = _format_frame(self.gym_env.reset())
        return dict(
            frame=initial_frame,
            reward=initial_reward,
            done=initial_done,
            episode_return=self.episode_return,
            episode_step=self.episode_step,
            last_action=initial_last_action,
        ) 
開發者ID:facebookresearch,項目名稱:torchbeast,代碼行數:18,代碼來源:environment.py

示例14: step

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def step(self, action):
        frame, reward, done, unused_info = self.gym_env.step(action.item())
        self.episode_step += 1
        self.episode_return += reward
        episode_step = self.episode_step
        episode_return = self.episode_return
        if done:
            frame = self.gym_env.reset()
            self.episode_return = torch.zeros(1, 1)
            self.episode_step = torch.zeros(1, 1, dtype=torch.int32)

        frame = _format_frame(frame)
        reward = torch.tensor(reward).view(1, 1)
        done = torch.tensor(done).view(1, 1)

        return dict(
            frame=frame,
            reward=reward,
            done=done,
            episode_return=episode_return,
            episode_step=episode_step,
            last_action=action,
        ) 
開發者ID:facebookresearch,項目名稱:torchbeast,代碼行數:25,代碼來源:environment.py

示例15: update_dtype

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import int32 [as 別名]
def update_dtype(self, old_dtype):
        updated = {}
        for k, v in old_dtype.items():
            if v == np.float32:
                dt = torch.float32
            elif v == np.float64:
                dt = torch.float64
            elif v == np.float16:
                dt = torch.float16
            elif v == np.uint8:
                dt = torch.uint8
            elif v == np.int8:
                dt = torch.int8
            elif v == np.int16:
                dt = torch.int16
            elif v == np.int32:
                dt = torch.int32
            elif v == np.int16:
                dt = torch.int16
            else:
                raise ValueError("Unsupported dtype {}".format(v))
            updated[k] = dt
        return updated 
開發者ID:heronsystems,項目名稱:adeptRL,代碼行數:25,代碼來源:ops.py


注:本文中的torch.int32方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。