當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.hamming_window方法代碼示例

本文整理匯總了Python中torch.hamming_window方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.hamming_window方法的具體用法?Python torch.hamming_window怎麽用?Python torch.hamming_window使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.hamming_window方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _feature_window_function

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def _feature_window_function(window_type: str,
                             window_size: int,
                             blackman_coeff: float,
                             device: torch.device,
                             dtype: int,
                             ) -> Tensor:
    r"""Returns a window function with the given type and size
    """
    if window_type == HANNING:
        return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype)
    elif window_type == HAMMING:
        return torch.hamming_window(window_size, periodic=False, alpha=0.54, beta=0.46, device=device, dtype=dtype)
    elif window_type == POVEY:
        # like hanning but goes to zero at edges
        return torch.hann_window(window_size, periodic=False, device=device, dtype=dtype).pow(0.85)
    elif window_type == RECTANGULAR:
        return torch.ones(window_size, device=device, dtype=dtype)
    elif window_type == BLACKMAN:
        a = 2 * math.pi / (window_size - 1)
        window_function = torch.arange(window_size, device=device, dtype=dtype)
        # can't use torch.blackman_window as they use different coefficients
        return (blackman_coeff - 0.5 * torch.cos(a * window_function) +
                (0.5 - blackman_coeff) * torch.cos(2 * a * window_function)).to(device=device, dtype=dtype)
    else:
        raise Exception('Invalid window type ' + window_type) 
開發者ID:pytorch,項目名稱:audio,代碼行數:27,代碼來源:kaldi.py

示例2: get_window

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def get_window(name, window_length, squared=False):
    """
    Returns a windowing function.
    
    Arguments:
    ----------
        window (str)                : name of the window, currently only 'hann' is available
        window_length (int)         : length of the window
        squared (bool)              : if true, square the window
        
    Returns:
    ----------
        torch.FloatTensor           : window of size `window_length`
    """
    if name == "hann":
        window = torch.hann_window(window_length)
    elif name == "hamming":
        window = torch.hamming_window(window_length)
    elif name == "blackman":
        window = torch.blackman_window(window_length)
    else:
        raise ValueError("Invalid window name {}".format(name))
    if squared:
        window *= window
    return window 
開發者ID:acids-ircam,項目名稱:ddsp_pytorch,代碼行數:27,代碼來源:modules.py

示例3: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def __init__(self, win_length, hop_length):
        super().__init__()

        self.win_length = win_length
        self.hop_length = hop_length

        self.disable_casts = self._opt_level == Optimization.mxprO1

        self.torch_windows = {
            'hann': torch.hann_window,
            'hamming': torch.hamming_window,
            'blackman': torch.blackman_window,
            'bartlett': torch.bartlett_window,
            'ones': torch.ones,
            None: torch.ones,
        } 
開發者ID:NVIDIA,項目名稱:NeMo,代碼行數:18,代碼來源:audio_preprocessing.py

示例4: test_mel2

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def test_mel2(self):
        top_db = 80.
        s2db = transforms.AmplitudeToDB('power', top_db)

        waveform = self.waveform.clone()  # (1, 16000)
        waveform_scaled = self.scale(waveform)  # (1, 16000)
        mel_transform = transforms.MelSpectrogram()
        # check defaults
        spectrogram_torch = s2db(mel_transform(waveform_scaled))  # (1, 128, 321)
        self.assertTrue(spectrogram_torch.dim() == 3)
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
        self.assertEqual(spectrogram_torch.size(1), mel_transform.n_mels)
        # check correctness of filterbank conversion matrix
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform.mel_scale.fb.sum(1).ge(0.).all())
        # check options
        kwargs = {'window_fn': torch.hamming_window, 'pad': 10, 'win_length': 500,
                  'hop_length': 125, 'n_fft': 800, 'n_mels': 50}
        mel_transform2 = transforms.MelSpectrogram(**kwargs)
        spectrogram2_torch = s2db(mel_transform2(waveform_scaled))  # (1, 50, 513)
        self.assertTrue(spectrogram2_torch.dim() == 3)
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
        self.assertEqual(spectrogram2_torch.size(1), mel_transform2.n_mels)
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).le(1.).all())
        self.assertTrue(mel_transform2.mel_scale.fb.sum(1).ge(0.).all())
        # check on multi-channel audio
        filepath = common_utils.get_asset_path('steam-train-whistle-daniel_simon.wav')
        x_stereo, sr_stereo = torchaudio.load(filepath)  # (2, 278756), 44100
        spectrogram_stereo = s2db(mel_transform(x_stereo))  # (2, 128, 1394)
        self.assertTrue(spectrogram_stereo.dim() == 3)
        self.assertTrue(spectrogram_stereo.size(0) == 2)
        self.assertTrue(spectrogram_torch.ge(spectrogram_torch.max() - top_db).all())
        self.assertEqual(spectrogram_stereo.size(1), mel_transform.n_mels)
        # check filterbank matrix creation
        fb_matrix_transform = transforms.MelScale(
            n_mels=100, sample_rate=16000, f_min=0., f_max=None, n_stft=400)
        self.assertTrue(fb_matrix_transform.fb.sum(1).le(1.).all())
        self.assertTrue(fb_matrix_transform.fb.sum(1).ge(0.).all())
        self.assertEqual(fb_matrix_transform.fb.size(), (400, 100)) 
開發者ID:pytorch,項目名稱:audio,代碼行數:41,代碼來源:test_transforms.py

示例5: test_istft_is_inverse_of_stft3

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def test_istft_is_inverse_of_stft3(self):
        # hamming_window, centered, normalized, not onesided
        kwargs3 = {
            'n_fft': 15,
            'hop_length': 3,
            'win_length': 11,
            'window': torch.hamming_window(11),
            'center': True,
            'pad_mode': 'constant',
            'normalized': True,
            'onesided': False,
        }
        _test_istft_is_inverse_of_stft(kwargs3) 
開發者ID:pytorch,項目名稱:audio,代碼行數:15,代碼來源:functional_cpu_test.py

示例6: test_istft_is_inverse_of_stft4

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def test_istft_is_inverse_of_stft4(self):
        # hamming_window, not centered, not normalized, onesided
        # window same size as n_fft
        kwargs4 = {
            'n_fft': 5,
            'hop_length': 2,
            'win_length': 5,
            'window': torch.hamming_window(5),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        _test_istft_is_inverse_of_stft(kwargs4) 
開發者ID:pytorch,項目名稱:audio,代碼行數:16,代碼來源:functional_cpu_test.py

示例7: test_istft_is_inverse_of_stft5

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def test_istft_is_inverse_of_stft5(self):
        # hamming_window, not centered, not normalized, not onesided
        # window same size as n_fft
        kwargs5 = {
            'n_fft': 3,
            'hop_length': 2,
            'win_length': 3,
            'window': torch.hamming_window(3),
            'center': False,
            'pad_mode': 'reflect',
            'normalized': False,
            'onesided': False,
        }
        _test_istft_is_inverse_of_stft(kwargs5) 
開發者ID:pytorch,項目名稱:audio,代碼行數:16,代碼來源:functional_cpu_test.py

示例8: test_linearity_of_istft4

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def test_linearity_of_istft4(self):
        # hamming_window, not centered, not normalized, onesided
        kwargs4 = {
            'n_fft': 12,
            'window': torch.hamming_window(12),
            'center': False,
            'pad_mode': 'constant',
            'normalized': False,
            'onesided': True,
        }
        data_size = (2, 7, 3, 2)
        self._test_linearity_of_istft(data_size, kwargs4, atol=1e-5, rtol=1e-8) 
開發者ID:pytorch,項目名稱:audio,代碼行數:14,代碼來源:functional_cpu_test.py

示例9: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def __call__(self, signal):
        spectrogram = torch.stft(
            torch.FloatTensor(signal),
            self.n_fft,
            hop_length=self.hop_length,
            win_length=self.n_fft,
            window=torch.hamming_window(self.n_fft),
            center=False,
            normalized=False,
            onesided=True
        )
        spectrogram = (spectrogram[:, :, 0].pow(2) + spectrogram[:, :, 1].pow(2)).pow(0.5)
        spectrogram = np.log1p(spectrogram.numpy())

        return spectrogram 
開發者ID:sooftware,項目名稱:KoSpeech,代碼行數:17,代碼來源:feature.py

示例10: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def __init__(self, sample_rate=8000, window_size=0.02, window_stride=0.01,
                       n_fft=None,
                       window="hamming", normalize="per_feature", log=True, center=True,
                       dither=constant, pad_to=8, max_duration=16.7,
                       frame_splicing=1):
        super(SpectrogramFeatures, self).__init__()
        torch_windows = {
            'hann': torch.hann_window,
            'hamming': torch.hamming_window,
            'blackman': torch.blackman_window,
            'bartlett': torch.bartlett_window,
            'none': None,
        }
        self.win_length = int(sample_rate * window_size)
        self.hop_length = int(sample_rate * window_stride)
        self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length))

        window_fn = torch_windows.get(window, None)
        window_tensor = window_fn(self.win_length,
                                  periodic=False) if window_fn else None
        self.window = window_tensor

        self.normalize = normalize
        self.log = log
        self.center = center
        self.dither = dither
        self.pad_to = pad_to
        self.frame_splicing = frame_splicing

        max_length = 1 + math.ceil(
                (max_duration * sample_rate - self.win_length) / self.hop_length
        )
        max_pad = 16 - (max_length % 16)
        self.max_length = max_length + max_pad 
開發者ID:mlperf,項目名稱:training,代碼行數:36,代碼來源:features.py

示例11: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding=0, dilation=1, bias=False, groups=1,
                 sample_rate=16000, min_low_hz=50, min_band_hz=50):

        super(SincConv,self).__init__()

        if in_channels != 1:
            #msg = (f'SincConv only support one input channel '
            #       f'(here, in_channels = {in_channels:d}).')
            msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels)
            raise ValueError(msg)

        self.out_channels = out_channels
        self.kernel_size = kernel_size
        
        # Forcing the filters to be odd (i.e, perfectly symmetrics)
        if kernel_size%2==0:
            self.kernel_size=self.kernel_size+1
            
        self.stride = stride
        self.padding = padding
        self.dilation = dilation

        if bias:
            raise ValueError('SincConv does not support bias.')
        if groups > 1:
            raise ValueError('SincConv does not support groups.')

        self.sample_rate = sample_rate
        self.min_low_hz = min_low_hz
        self.min_band_hz = min_band_hz

        # initialize filterbanks such that they are equally spaced in Mel scale
        low_hz = 30
        high_hz = self.sample_rate / 2 - (self.min_low_hz + self.min_band_hz)

        mel = np.linspace(self.to_mel(low_hz),
                          self.to_mel(high_hz),
                          self.out_channels + 1)
        hz = self.to_hz(mel) / self.sample_rate
        

        # filter lower frequency (out_channels, 1)
        self.low_hz_ = nn.Parameter(torch.Tensor(hz[:-1]).view(-1, 1))

        # filter frequency band (out_channels, 1)
        self.band_hz_ = nn.Parameter(torch.Tensor(np.diff(hz)).view(-1, 1))

        # Hamming window
        #self.window_ = torch.hamming_window(self.kernel_size)
        n_lin=torch.linspace(0, self.kernel_size, steps=self.kernel_size)
        self.window_=0.54-0.46*torch.cos(2*math.pi*n_lin/self.kernel_size);

        # (kernel_size, 1)
        n = (self.kernel_size - 1) / 2
        self.n_ = torch.arange(-n, n+1).view(1, -1) / self.sample_rate 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:58,代碼來源:neural_networks.py

示例12: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def __init__(self, in_channels, out_channels, kernel_size,
                 stride=1, padding='VALID', pad_mode='reflect',
                 dilation=1, bias=False, groups=1,
                 sample_rate=16000, min_low_hz=50, min_band_hz=50):

        super(SincConv_fast,self).__init__()

        if in_channels != 1:
            #msg = (f'SincConv only support one input channel '
            #       f'(here, in_channels = {in_channels:d}).')
            msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels)
            raise ValueError(msg)

        self.out_channels = out_channels
        self.kernel_size = kernel_size
        
        # Forcing the filters to be odd (i.e, perfectly symmetrics)
        if kernel_size%2==0:
            self.kernel_size=self.kernel_size+1
            
        self.stride = stride
        self.padding = padding
        self.pad_mode = pad_mode
        self.dilation = dilation

        if bias:
            raise ValueError('SincConv does not support bias.')
        if groups > 1:
            raise ValueError('SincConv does not support groups.')

        self.sample_rate = sample_rate
        self.min_low_hz = min_low_hz
        self.min_band_hz = min_band_hz

        # initialize filterbanks such that they are equally spaced in Mel scale
        low_hz = 30
        high_hz = self.sample_rate / 2 - (self.min_low_hz + self.min_band_hz)

        mel = np.linspace(self.to_mel(low_hz),
                          self.to_mel(high_hz),
                          self.out_channels + 1)
        hz = self.to_hz(mel)
        

        # filter lower frequency (out_channels, 1)
        self.low_hz_ = nn.Parameter(torch.Tensor(hz[:-1]).view(-1, 1))

        # filter frequency band (out_channels, 1)
        self.band_hz_ = nn.Parameter(torch.Tensor(np.diff(hz)).view(-1, 1))

        # Hamming window
        #self.window_ = torch.hamming_window(self.kernel_size)
        n_lin=torch.linspace(0, (self.kernel_size/2)-1, steps=int((self.kernel_size/2))) # computing only half of the window
        self.window_=0.54-0.46*torch.cos(2*math.pi*n_lin/self.kernel_size);


        # (kernel_size, 1)
        n = (self.kernel_size - 1) / 2.0
        self.n_ = 2*math.pi*torch.arange(-n, 0).view(1, -1) / self.sample_rate # Due to symmetry, I only need half of the time axes 
開發者ID:santi-pdp,項目名稱:pase,代碼行數:61,代碼來源:modules.py

示例13: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def __init__(self, sample_rate=8000, window_size=0.02, window_stride=0.01,
                 window="hamming", normalize="per_feature", n_fft=None,
                 preemph=0.97,
                 nfilt=64, lowfreq=0, highfreq=None, log=True, dither=constant,
                 pad_to=8,
                 max_duration=16.7,
                 frame_splicing=1):
        super(FilterbankFeatures, self).__init__()
#        print("PADDING: {}".format(pad_to))

        torch_windows = {
            'hann': torch.hann_window,
            'hamming': torch.hamming_window,
            'blackman': torch.blackman_window,
            'bartlett': torch.bartlett_window,
            'none': None,
        }

        self.win_length = int(sample_rate * window_size)  # frame size
        self.hop_length = int(sample_rate * window_stride)
        self.n_fft = n_fft or 2 ** math.ceil(math.log2(self.win_length))

        self.normalize = normalize
        self.log = log
        self.dither = dither
        self.frame_splicing = frame_splicing
        self.nfilt = nfilt
        self.preemph = preemph
        self.pad_to = pad_to
        # For now, always enable this.
        # See https://docs.google.com/presentation/d/1IVC3J-pHB-ipJpKsJox_SqmDHYdkIaoCXTbKmJmV2-I/edit?usp=sharing for elaboration
        self.use_deterministic_dithering = True
        highfreq = highfreq or sample_rate / 2
        window_fn = torch_windows.get(window, None)
        window_tensor = window_fn(self.win_length,
                                  periodic=False) if window_fn else None
        filterbanks = torch.tensor(
            librosa.filters.mel(sample_rate, self.n_fft, n_mels=nfilt, fmin=lowfreq,
                                fmax=highfreq), dtype=torch.float).unsqueeze(0)
        # self.fb = filterbanks
        # self.window = window_tensor
        self.register_buffer("fb", filterbanks)
        self.register_buffer("window", window_tensor)
        # Calculate maximum sequence length (# frames)
        max_length = 1 + math.ceil(
            (max_duration * sample_rate - self.win_length) / self.hop_length
        )
        max_pad = 16 - (max_length % 16)
        self.max_length = max_length + max_pad 
開發者ID:mlperf,項目名稱:inference,代碼行數:51,代碼來源:features.py

示例14: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import hamming_window [as 別名]
def __init__(self, out_channels, kernel_size, sample_rate=16000, in_channels=1,
                 stride=1, padding=0, dilation=1, bias=False, groups=1, min_low_hz=50, min_band_hz=50):

        super(SincConv_fast,self).__init__()

        if in_channels != 1:
            #msg = (f'SincConv only support one input channel '
            #       f'(here, in_channels = {in_channels:d}).')
            msg = "SincConv only support one input channel (here, in_channels = {%i})" % (in_channels)
            raise ValueError(msg)

        self.out_channels = out_channels
        self.kernel_size = kernel_size
        
        # Forcing the filters to be odd (i.e, perfectly symmetrics)
        if kernel_size%2==0:
            self.kernel_size=self.kernel_size+1
            
        self.stride = stride
        self.padding = padding
        self.dilation = dilation

        if bias:
            raise ValueError('SincConv does not support bias.')
        if groups > 1:
            raise ValueError('SincConv does not support groups.')

        self.sample_rate = sample_rate
        self.min_low_hz = min_low_hz
        self.min_band_hz = min_band_hz

        # initialize filterbanks such that they are equally spaced in Mel scale
        low_hz = 30
        high_hz = self.sample_rate / 2 - (self.min_low_hz + self.min_band_hz)

        mel = np.linspace(self.to_mel(low_hz),
                          self.to_mel(high_hz),
                          self.out_channels + 1)
        hz = self.to_hz(mel)
        

        # filter lower frequency (out_channels, 1)
        self.low_hz_ = nn.Parameter(torch.Tensor(hz[:-1]).view(-1, 1))

        # filter frequency band (out_channels, 1)
        self.band_hz_ = nn.Parameter(torch.Tensor(np.diff(hz)).view(-1, 1))

        # Hamming window
        #self.window_ = torch.hamming_window(self.kernel_size)
        n_lin=torch.linspace(0, (self.kernel_size/2)-1, steps=int((self.kernel_size/2))) # computing only half of the window
        self.window_=0.54-0.46*torch.cos(2*math.pi*n_lin/self.kernel_size);


        # (1, kernel_size/2)
        n = (self.kernel_size - 1) / 2.0
        self.n_ = 2*math.pi*torch.arange(-n, 0).view(1, -1) / self.sample_rate # Due to symmetry, I only need half of the time axes 
開發者ID:mravanelli,項目名稱:SincNet,代碼行數:58,代碼來源:dnn_models.py


注:本文中的torch.hamming_window方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。