本文整理匯總了Python中torch.get_rng_state方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.get_rng_state方法的具體用法?Python torch.get_rng_state怎麽用?Python torch.get_rng_state使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch
的用法示例。
在下文中一共展示了torch.get_rng_state方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __getitem__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where target is class_index of the target class.
"""
# create random image that is consistent with the index id
rng_state = torch.get_rng_state()
torch.manual_seed(index + self.random_offset)
img = torch.randn(*self.image_size)
target = torch.Tensor(1).random_(0, self.num_classes)[0]
torch.set_rng_state(rng_state)
# convert to PIL Image
img = transforms.ToPILImage()(img)
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
示例2: save_rng_states
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def save_rng_states(device: torch.device,
rng_states: Deque[RNGStates],
) -> None:
""":meth:`Checkpoint.forward` captures the current PyTorch's random number
generator states at CPU and GPU to reuse in :meth:`Recompute.backward`.
.. seealso:: :ref:`Referential Transparency`
"""
cpu_rng_state = torch.get_rng_state()
gpu_rng_state: Optional[ByteTensor]
if device.type == 'cuda':
gpu_rng_state = torch.cuda.get_rng_state(device)
else:
gpu_rng_state = None
rng_states.append((cpu_rng_state, gpu_rng_state))
示例3: test_get_set_device_states
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def test_get_set_device_states(device, enabled):
shape = (1, 1, 10, 10)
if not torch.cuda.is_available() and device == 'cuda':
pytest.skip('This test requires a GPU to be available')
X = torch.ones(shape, device=device)
devices, states = get_device_states(X)
assert len(states) == (1 if device == 'cuda' else 0)
assert len(devices) == (1 if device == 'cuda' else 0)
cpu_rng_state = torch.get_rng_state()
Y = X * torch.rand(shape, device=device)
with torch.random.fork_rng(devices=devices, enabled=True):
if enabled:
if device == 'cpu':
torch.set_rng_state(cpu_rng_state)
else:
set_device_states(devices=devices, states=states)
Y2 = X * torch.rand(shape, device=device)
assert torch.equal(Y, Y2) == enabled
示例4: setUp
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def setUp(self):
if os.getenv("unlock_seed") is None or os.getenv("unlock_seed").lower() == "false":
self.rng_state = torch.get_rng_state()
torch.manual_seed(1)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(1)
random.seed(1)
mats = torch.randn(5, 4, 4)
mats = mats @ mats.transpose(-1, -2)
mats.div_(5).add_(torch.eye(4).unsqueeze_(0))
vecs = torch.randn(5, 4, 6)
self.mats = mats.detach().clone().requires_grad_(True)
self.mats_clone = mats.detach().clone().requires_grad_(True)
self.vecs = vecs.detach().clone().requires_grad_(True)
self.vecs_clone = vecs.detach().clone().requires_grad_(True)
示例5: save_states
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def save_states(self):
"""Saves the states inside a checkpoint associated with ``epoch``."""
checkpoint_data = dict()
if isinstance(self.model, torch.nn.DataParallel):
checkpoint_data['model'] = self.model.module.state_dict()
else:
checkpoint_data['model'] = self.model.state_dict()
checkpoint_data['optimizer'] = self.optimizer.state_dict()
checkpoint_data['random_states'] = (
random.getstate(), np.random.get_state(), torch.get_rng_state(), torch.cuda.get_rng_state() if
torch.cuda.is_available() else None
)
checkpoint_data['counters'] = self.counters
checkpoint_data['losses_epoch'] = self.losses_epoch
checkpoint_data['losses_it'] = self.losses_it
checkpoint_data.update(self.save_states_others())
self.experiment.checkpoint_save(checkpoint_data, self.counters['epoch'])
示例6: get_checkpoint
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def get_checkpoint(S, stop_conds, rng=None, get_state=True):
"""
Save the necessary information into a dictionary
"""
m = {}
m['ninitfeats'] = S.ninitfeats
m['x0'] = S.x0
x = S.x.clone().cpu().detach()
m['feats'] = np.where(x.numpy() >= 0)[0]
m.update({k: v[0] for k, v in stop_conds.items()})
if get_state:
m.update({constants.Checkpoint.MODEL: S.state_dict(),
constants.Checkpoint.OPT: S.opt_train.state_dict(),
constants.Checkpoint.RNG: torch.get_rng_state(),
})
if rng:
m.update({'rng_state': rng.get_state()})
return m
示例7: save_model
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def save_model(self, epochs=-1, optimisers=None, save_dir=None, name=ALICE, timestamp=None):
'''
Method to persist the model
'''
if not timestamp:
timestamp = str(int(time()))
state = {
EPOCHS: epochs + 1,
STATE_DICT: self.state_dict(),
OPTIMISER: [optimiser.state_dict() for optimiser in optimisers],
NP_RANDOM_STATE: np.random.get_state(),
PYTHON_RANDOM_STATE: random.getstate(),
PYTORCH_RANDOM_STATE: torch.get_rng_state()
}
path = os.path.join(save_dir,
name + "_model_timestamp_" + timestamp + ".tar")
torch.save(state, path)
print("saved model to path = {}".format(path))
示例8: with_torch_seed
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def with_torch_seed(seed):
assert isinstance(seed, int)
rng_state = torch.get_rng_state()
cuda_rng_state = torch.cuda.get_rng_state()
set_torch_seed(seed)
yield
torch.set_rng_state(rng_state)
torch.cuda.set_rng_state(cuda_rng_state)
示例9: torch_seed
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def torch_seed(seed: Optional[int]):
"""Context manager which seeds the PyTorch PRNG with the specified seed and
restores the state afterward. Setting seed to None is equivalent to running
the code without the context manager."""
if seed is None:
yield
return
state = torch.get_rng_state()
torch.manual_seed(seed)
try:
yield
finally:
torch.set_rng_state(state)
示例10: write_dummy_file
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def write_dummy_file(filename, num_examples, maxlen):
rng_state = torch.get_rng_state()
torch.manual_seed(0)
data = torch.rand(num_examples * maxlen)
data = 97 + torch.floor(26 * data).int()
with open(filename, "w") as h:
offset = 0
for _ in range(num_examples):
ex_len = random.randint(1, maxlen)
ex_str = " ".join(map(chr, data[offset : offset + ex_len]))
print(ex_str, file=h)
offset += ex_len
torch.set_rng_state(rng_state)
示例11: __enter__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def __enter__(self):
self.old_rng_state = torch.get_rng_state()
torch.manual_seed(self.rng_seed)
示例12: checkpoint
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def checkpoint(acc, epoch):
# Save checkpoint.
print('Saving..')
state = {
'net': net,
'acc': acc,
'epoch': epoch,
'rng_state': torch.get_rng_state()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7.' + args.sess + '_' + str(args.seed))
示例13: checkpoint
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def checkpoint(acc, epoch):
# Save checkpoint.
print('Saving..')
state = {
'net': net,
'acc': acc,
'epoch': epoch,
'rng_state': torch.get_rng_state()
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/' + args.arch + '_' + args.sess + '_' + str(args.seed) + '.ckpt')
示例14: get_device_states
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def get_device_states(*args):
# This will not error out if "arg" is a CPU tensor or a non-tensor type because
# the conditionals short-circuit.
fwd_gpu_devices = list(set(arg.get_device() for arg in args
if isinstance(arg, torch.Tensor) and arg.is_cuda))
fwd_gpu_states = []
for device in fwd_gpu_devices:
with torch.cuda.device(device):
fwd_gpu_states.append(torch.cuda.get_rng_state())
return fwd_gpu_devices, fwd_gpu_states
示例15: save_rng_state
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import get_rng_state [as 別名]
def save_rng_state(file_name):
rng_state = torch.get_rng_state()
torch_save(rng_state, file_name)