當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.ger方法代碼示例

本文整理匯總了Python中torch.ger方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.ger方法的具體用法?Python torch.ger怎麽用?Python torch.ger使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.ger方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def forward(self, x, vertices, recep):
        emb = self.embedding(vertices)
        if self.inst_norm:
            emb = self.norm(emb.transpose(1, 2)).transpose(1, 2)
        x = torch.cat((x, emb), dim=2)
        if self.use_vertex_feature:
            vfeature = self.vertex_feature(vertices)
            x = torch.cat((x, vfeature), dim=2)
        bs, l = recep.size()
        n = x.size()[1] # x is of shape bs x n x num_feature
        offset = torch.ger(torch.arange(0, bs).long(), torch.ones(l).long() * n)
        offset = Variable(offset, requires_grad=False)
        offset = offset.cuda()
        recep = (recep.long() + offset).view(-1)
        x = x.view(bs * n, -1)
        x = x.index_select(dim=0, index=recep)
        x = x.view(bs, l, -1) # x is of shape bs x l x num_feature, l=w*k
        x = x.transpose(1, 2) # x is of shape bs x num_feature x l, l=w*k
        x = F.relu(self.conv1(x))
        x = F.relu(self.conv2(x))
        x = F.dropout(x, self.dropout, training=self.training)
        x = x.view(bs, -1)
        x = self.fc(x)
        return F.log_softmax(x, dim=-1) 
開發者ID:xptree,項目名稱:DeepInf,代碼行數:26,代碼來源:pscn.py

示例2: outer

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def outer(tensor0: BKTensor, tensor1: BKTensor) -> BKTensor:

    tensor0 = tensor0.contiguous()
    tensor1 = tensor1.contiguous()

    bits = rank(tensor0) + rank(tensor1)
    num0 = torch.numel(tensor0[0])
    num1 = torch.numel(tensor1[0])
    res = (torch.ger(tensor0[0].view(num0), tensor1[0].view(num1))
           - torch.ger(tensor0[1].view(num0), tensor1[1].view(num1)),
           torch.ger(tensor0[0].view(num0), tensor1[1].view(num1))
           + torch.ger(tensor0[1].view(num0), tensor1[0].view(num1)))
    tensor = torch.stack(res)
    tensor = tensor.resize_([2]*(bits+1))

    return tensor 
開發者ID:rigetti,項目名稱:quantumflow,代碼行數:18,代碼來源:torchbk.py

示例3: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def forward(self, input_ids):
        words_embeddings = self.word_embeddings(input_ids)

        seq_length = input_ids.size(1)
        position_ids = torch.arange(
            seq_length - 1, -1, -1.0,
            dtype=words_embeddings.dtype,
            device=words_embeddings.device)
        sinusoidal_input = torch.ger(position_ids, self.inverse_frequency)
        position_embeddings = torch.cat([sinusoidal_input.sin(), sinusoidal_input.cos()], -1)
        position_embeddings = position_embeddings.unsqueeze(0)

        embeddings = words_embeddings + position_embeddings
        embeddings = self.layer_norm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings 
開發者ID:songlab-cal,項目名稱:tape,代碼行數:18,代碼來源:modeling_resnet.py

示例4: bilinear_pooling

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def bilinear_pooling(x,y):
    x_size = x.size()
    y_size = y.size()

    assert(x_size[:-1] == y_size[:-1])

    out_size = list(x_size)
    out_size[-1] = x_size[-1]*y_size[-1]

    x = x.view([-1,x_size[-1]])
    y = y.view([-1,y_size[-1]])

    out_stack = []
    for i in range(x.size()[0]):
        out_stack.append(torch.ger(x[i],y[i]))

    out = torch.stack(out_stack)

    return out.view(out_size) 
開發者ID:gdlg,項目名稱:pytorch_compact_bilinear_pooling,代碼行數:21,代碼來源:test.py

示例5: _kernel_matching

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def _kernel_matching(q1_x, q1_mu, xt_x, xt_mu, radius) :
	"""
	Given two measures q1 and xt represented by locations/weights arrays, 
	outputs a kernel-fidelity term and an empty 'info' array.
	"""
	K_qq, K_qx, K_xx = _cross_kernels(q1_x, xt_x, radius)
	cost = .5 * (   torch.sum(K_qq * torch.ger(q1_mu,q1_mu)) \
				 +  torch.sum(K_xx * torch.ger(xt_mu,xt_mu)) \
				 -2*torch.sum(K_qx * torch.ger(q1_mu,xt_mu))  )
				 
	# Info = the 2D graph of the blurred distance function
	# Increase res if you want to get nice smooth pictures...
	res    = 10 ; ticks = np.linspace( 0, 1, res + 1)[:-1] + 1/(2*res) 
	X,Y    = np.meshgrid( ticks, ticks )
	points = Variable(torch.from_numpy(np.vstack( (X.ravel(), Y.ravel()) ).T).type(dtype), requires_grad=False)
							   
	info   = _k( points, q1_x , radius ) @ q1_mu \
	       - _k( points, xt_x , radius ) @ xt_mu
	return [cost , info.view( (res,res) ) ] 
開發者ID:jeanfeydy,項目名稱:lddmm-ot,代碼行數:21,代碼來源:lddmm_pytorch.py

示例6: _fix

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def _fix(self, mtx, avg, tlen, center=True):
        """
        Returns a triple containing the covariance matrix, the average and
        the number of observations.
        :param mtx:
        :param center:
        :return:
        """
        mtx /= tlen - 1

        # Substract the mean
        if center:
            avg_mtx = torch.ger(avg, avg)
            avg_mtx /= tlen * (tlen - 1)
            mtx -= avg_mtx
        # end if

        # Fix the average
        avg /= tlen

        return mtx, avg, tlen
    # end fix

    # Update covariance matrix 
開發者ID:nschaetti,項目名稱:EchoTorch,代碼行數:26,代碼來源:PCACell.py

示例7: create_grid

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def create_grid(size, flatten=True):
    "Create a grid of a given `size`."
    if isinstance(size, tuple):
        H, W = size
    else:
        H, W = size, size

    grid = torch.FloatTensor(H, W, 2)
    linear_points = torch.linspace(-1+1/W, 1-1/W,
                                   W) if W > 1 else torch.tensor([0.])
    grid[:, :, 1] = torch.ger(torch.ones(
        H), linear_points).expand_as(grid[:, :, 0])
    linear_points = torch.linspace(-1+1/H, 1-1/H,
                                   H) if H > 1 else torch.tensor([0.])
    grid[:, :, 0] = torch.ger(
        linear_points, torch.ones(W)).expand_as(grid[:, :, 1])
    return grid.view(-1, 2) if flatten else grid 
開發者ID:TheShadow29,項目名稱:zsgnet-pytorch,代碼行數:19,代碼來源:anchors.py

示例8: decode

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def decode(score_s, score_e, top_n=1, max_len=None):
        """Take argmax of constrained score_s * score_e.

        Args:
            score_s: independent start predictions
            score_e: independent end predictions
            top_n: number of top scored pairs to take
            max_len: max span length to consider
        """
        pred_s = []
        pred_e = []
        pred_score = []
        max_len = max_len or score_s.size(1)
        for i in range(score_s.size(0)):
            # Outer product of scores to get full p_s * p_e matrix
            scores = torch.ger(score_s[i], score_e[i])

            # Zero out negative length and over-length span scores
            scores.triu_().tril_(max_len - 1)

            # Take argmax or top n
            scores = scores.numpy()
            scores_flat = scores.flatten()
            if top_n == 1:
                idx_sort = [np.argmax(scores_flat)]
            elif len(scores_flat) < top_n:
                idx_sort = np.argsort(-scores_flat)
            else:
                idx = np.argpartition(-scores_flat, top_n)[0:top_n]
                idx_sort = idx[np.argsort(-scores_flat[idx])]
            s_idx, e_idx = np.unravel_index(idx_sort, scores.shape)
            pred_s.append(s_idx)
            pred_e.append(e_idx)
            pred_score.append(scores_flat[idx_sort])
        del score_s, score_e
        return pred_s, pred_e, pred_score 
開發者ID:HKUST-KnowComp,項目名稱:MnemonicReader,代碼行數:38,代碼來源:model.py

示例9: _apply_transforms

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def _apply_transforms(inputs, q_vectors):
        """Apply the sequence of transforms parameterized by given q_vectors to inputs.

        Costs O(KDN), where:
        - K is number of transforms
        - D is dimensionality of inputs
        - N is number of inputs

        Args:
            inputs: Tensor of shape [N, D]
            q_vectors: Tensor of shape [K, D]

        Returns:
            A tuple of:
            - A Tensor of shape [N, D], the outputs.
            - A Tensor of shape [N], the log absolute determinants of the total transform.
        """
        squared_norms = torch.sum(q_vectors ** 2, dim=-1)
        outputs = inputs
        for q_vector, squared_norm in zip(q_vectors, squared_norms):
            temp = outputs @ q_vector  # Inner product.
            temp = torch.ger(temp, (2.0 / squared_norm) * q_vector)  # Outer product.
            outputs = outputs - temp
        batch_size = inputs.shape[0]
        logabsdet = torch.zeros(batch_size)
        return outputs, logabsdet 
開發者ID:bayesiains,項目名稱:nsf,代碼行數:28,代碼來源:orthogonal.py

示例10: decode

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def decode(score_s, score_e, top_n=1, max_len=None):
        """Take argmax of constrained score_s * score_e.

        Args:
            score_s: independent start predictions
            score_e: independent end predictions
            top_n: number of top scored pairs to take
            max_len: max span length to consider
        """
        pred_s = []
        pred_e = []
        pred_score = []
        max_len = max_len or score_s.size(1)
        for i in range(score_s.size(0)):
            # Outer product of scores to get full p_s * p_e matrix
            scores = torch.ger(score_s[i], score_e[i])

            # Zero out negative length and over-length span scores
            scores.triu_().tril_(max_len - 1)

            # Take argmax or top n
            scores = scores.numpy()
            scores_flat = scores.flatten()
            if top_n == 1:
                idx_sort = [np.argmax(scores_flat)]
            elif len(scores_flat) < top_n:
                idx_sort = np.argsort(-scores_flat)
            else:
                idx = np.argpartition(-scores_flat, top_n)[0:top_n]
                idx_sort = idx[np.argsort(-scores_flat[idx])]
            s_idx, e_idx = np.unravel_index(idx_sort, scores.shape)
            pred_s.append(s_idx)
            pred_e.append(e_idx)
            pred_score.append(scores_flat[idx_sort])
        return pred_s, pred_e, pred_score 
開發者ID:thunlp,項目名稱:OpenQA,代碼行數:37,代碼來源:model.py

示例11: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def forward(self, pos_seq, bsz=None):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)

        if bsz is not None:
            return pos_emb[:,None,:].expand(-1, bsz, -1)
        else:
            return pos_emb[:,None,:] 
開發者ID:649453932,項目名稱:Bert-Chinese-Text-Classification-Pytorch,代碼行數:10,代碼來源:modeling_transfo_xl.py

示例12: rodrigues

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def rodrigues(self, r):
        """
        Rodrigues' rotation formula that turns axis-angle tensor into rotation
        matrix in a batch-ed manner.

        Parameter:
        ----------
        r: Axis-angle rotation tensor of shape [N, 1, 3].

        Return:
        -------
        Rotation matrix of shape [N, 3, 3].
        """
        theta = torch.norm(r, dim=(1, 2), keepdim=True)
        # avoid division by zero
        torch.max(theta, theta.new_full((1,), torch.finfo(theta.dtype).tiny), out=theta)
        #The .tiny has to be uploaded to GPU, but self.regress_joints is such a big bottleneck it is not felt.

        r_hat = r / theta
        z_stick = torch.zeros_like(r_hat[:, 0, 0])
        m = torch.stack(
            (z_stick, -r_hat[:, 0, 2], r_hat[:, 0, 1],
             r_hat[:, 0, 2], z_stick, -r_hat[:, 0, 0],
             -r_hat[:, 0, 1], r_hat[:, 0, 0], z_stick), dim=1)
        m = m.reshape(-1, 3, 3)

        dot = torch.bmm(r_hat.transpose(1, 2), r_hat)  # Batched outer product.
        # torch.matmul or torch.stack([torch.ger(r, r) for r in r_hat.squeeze(1)] works too.
        cos = theta.cos()
        R = cos * self.eye + (1 - cos) * dot + theta.sin() * m
        return R 
開發者ID:CalciferZh,項目名稱:SMPL,代碼行數:33,代碼來源:SMIL_torch_batch.py

示例13: kronecker_product

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def kronecker_product(mat1, mat2):
    return torch.ger(mat1.view(-1), mat2.view(-1)).reshape(*(mat1.size() + mat2.size())).permute(
        [0, 2, 1, 3]).reshape(mat1.size(0) * mat2.size(0), mat1.size(1) * mat2.size(1)) 
開發者ID:d-li14,項目名稱:dgconv.pytorch,代碼行數:5,代碼來源:dgconv.py

示例14: _scores_to_text

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def _scores_to_text(self, text, score_s, score_e):
        max_len = self.config['max_answer_len'] or score_s.size(1)
        scores = torch.ger(score_s.squeeze(), score_e.squeeze())
        scores.triu_().tril_(max_len - 1)
        scores = scores.cpu().detach().numpy()
        s_idx, e_idx = np.unravel_index(np.argmax(scores), scores.shape)
        return ' '.join(text[s_idx: e_idx + 1]), (int(s_idx), int(e_idx)) 
開發者ID:stanfordnlp,項目名稱:coqa-baselines,代碼行數:9,代碼來源:model.py

示例15: _scores_to_raw_text

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import ger [as 別名]
def _scores_to_raw_text(self, raw_text, offsets, score_s, score_e):
        max_len = self.config['max_answer_len'] or score_s.size(1)
        scores = torch.ger(score_s.squeeze(), score_e.squeeze())
        scores.triu_().tril_(max_len - 1)
        scores = scores.cpu().detach().numpy()
        s_idx, e_idx = np.unravel_index(np.argmax(scores), scores.shape)
        return raw_text[offsets[s_idx][0]: offsets[e_idx][1]], (offsets[s_idx][0], offsets[e_idx][1]) 
開發者ID:stanfordnlp,項目名稱:coqa-baselines,代碼行數:9,代碼來源:model.py


注:本文中的torch.ger方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。