當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.full_like方法代碼示例

本文整理匯總了Python中torch.full_like方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.full_like方法的具體用法?Python torch.full_like怎麽用?Python torch.full_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.full_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def forward(self, x):
        """
        Normalize activations.
        :param x: input activations
        :return: normalized activations
        """
        if self.training:  # compute the pooled moments for the context and save off the moments and context size
            alpha = self.sigmoid(self.a * (x.size())[0] + self.b)  # compute alpha with context size
            batch_mean, batch_var = self._compute_batch_moments(x)
            pooled_mean, pooled_var = self._compute_pooled_moments(x, alpha, batch_mean, batch_var,
                                                                   self._get_augment_moment_fn())
            self.context_batch_mean = batch_mean
            self.context_batch_var = batch_var
            self.context_size = torch.full_like(self.context_size, x.size()[0])
        else:  # compute the pooled moments for the target
            alpha = self.sigmoid(self.a * self.context_size + self.b)  # compute alpha with saved context size
            pooled_mean, pooled_var = self._compute_pooled_moments(x, alpha, self.context_batch_mean,
                                                                   self.context_batch_var,
                                                                   self._get_augment_moment_fn())

        return self._normalize(x, pooled_mean, pooled_var)  # normalize 
開發者ID:cambridge-mlg,項目名稱:cnaps,代碼行數:23,代碼來源:normalization_layers.py

示例2: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def __init__(self, args, dictionary):
        super().__init__(args)
        self.dictionary = dictionary
        self.seed = args.seed

        # add mask token
        self.mask_idx = dictionary.add_symbol('<mask>')
        dictionary.pad_to_multiple_(8)  # often faster if divisible by 8

        mask_idx = 0
        pad_idx = 1
        seq = torch.arange(args.tokens_per_sample) + pad_idx + 1
        mask = torch.arange(2, args.tokens_per_sample, 7)  # ~15%
        src = seq.clone()
        src[mask] = mask_idx
        tgt = torch.full_like(seq, pad_idx)
        tgt[mask] = seq[mask]

        self.dummy_src = src
        self.dummy_tgt = tgt 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:22,代碼來源:dummy_masked_lm.py

示例3: drop_word

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def drop_word(self, words):
        r"""
        按照設定隨機將words設置為unknown_index。

        :param torch.LongTensor words: batch_size x max_len
        :return:
        """
        if self.word_dropout > 0 and self.training:
            with torch.no_grad():
                mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device)
                mask = torch.bernoulli(mask).eq(1)  # dropout_word越大,越多位置為1
                pad_mask = words.ne(self._word_pad_index)
                mask = pad_mask.__and__(mask)  # pad的位置不為unk
                if self._word_sep_index!=-100:
                    not_sep_mask = words.ne(self._word_sep_index)
                    mask = mask.__and__(not_sep_mask)
                if self._word_cls_index!=-100:
                    not_cls_mask = words.ne(self._word_cls_index)
                    mask = mask.__and__(not_cls_mask)
                words = words.masked_fill(mask, self._word_unk_index)
        return words 
開發者ID:fastnlp,項目名稱:fastNLP,代碼行數:23,代碼來源:roberta_embedding.py

示例4: batch_preprocess

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def batch_preprocess(batch, pad_idx, eos_idx, reverse=False):
    batch_pos, batch_neg = batch
    diff = batch_pos.size(1) - batch_neg.size(1)
    if diff < 0:
        pad = torch.full_like(batch_neg[:, :-diff], pad_idx)
        batch_pos = torch.cat((batch_pos, pad), 1)
    elif diff > 0:
        pad = torch.full_like(batch_pos[:, :diff], pad_idx)
        batch_neg = torch.cat((batch_neg, pad), 1)

    pos_styles = torch.ones_like(batch_pos[:, 0])
    neg_styles = torch.zeros_like(batch_neg[:, 0])

    if reverse:
        batch_pos, batch_neg = batch_neg, batch_pos
        pos_styles, neg_styles = neg_styles, pos_styles
        
    tokens = torch.cat((batch_pos, batch_neg), 0)
    lengths = get_lengths(tokens, eos_idx)
    styles = torch.cat((pos_styles, neg_styles), 0)

    return tokens, lengths, styles 
開發者ID:plkmo,項目名稱:NLP_Toolkit,代碼行數:24,代碼來源:train.py

示例5: test_out

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def test_out(test, reduce, dtype, device):
    src = tensor(test['src'], dtype, device)
    index = tensor(test['index'], torch.long, device)
    dim = test['dim']
    expected = tensor(test[reduce], dtype, device)

    out = torch.full_like(expected, -2)

    getattr(torch_scatter, 'scatter_' + reduce)(src, index, dim, out)

    if reduce == 'sum' or reduce == 'add':
        expected = expected - 2
    elif reduce == 'mean':
        expected = out  # We can not really test this here.
    elif reduce == 'min':
        expected = expected.fill_(-2)
    elif reduce == 'max':
        expected[expected == 0] = -2
    else:
        raise ValueError

    assert torch.all(out == expected) 
開發者ID:rusty1s,項目名稱:pytorch_scatter,代碼行數:24,代碼來源:test_scatter.py

示例6: test_smoothed_box_prior_log_prob

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def test_smoothed_box_prior_log_prob(self, cuda=False):
        device = torch.device("cuda") if cuda else torch.device("cpu")
        a, b = torch.zeros(2, device=device), torch.ones(2, device=device)
        sigma = 0.1
        prior = SmoothedBoxPrior(a, b, sigma)

        self.assertTrue(torch.equal(prior.a, a))
        self.assertTrue(torch.equal(prior.b, b))
        self.assertTrue(torch.equal(prior.sigma, torch.full_like(prior.a, sigma)))
        self.assertTrue(torch.all(approx_equal(prior._M, torch.full_like(prior.a, 1.6073))))

        t = torch.tensor([0.5, 1.1], device=device)
        self.assertAlmostEqual(prior.log_prob(t).item(), -0.9473, places=4)
        t = torch.tensor([[0.5, 1.1], [0.1, 0.25]], device=device)
        log_prob_expected = torch.tensor([-0.947347, -0.447347], device=t.device)
        self.assertTrue(torch.all(approx_equal(prior.log_prob(t), log_prob_expected)))
        with self.assertRaises(RuntimeError):
            prior.log_prob(torch.zeros(3, device=device)) 
開發者ID:cornellius-gp,項目名稱:gpytorch,代碼行數:20,代碼來源:test_smoothed_box_prior.py

示例7: sample_action

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def sample_action(self, scores: torch.Tensor) -> rlt.ActorOutput:
        assert scores.dim() == 2, (
            "scores dim is %d" % scores.dim()
        )  # batch_size x num_actions
        batch_size, num_actions = scores.shape

        # pyre-fixme[16]: `Tensor` has no attribute `argmax`.
        argmax = F.one_hot(scores.argmax(dim=1), num_actions).bool()

        rand_prob = self.epsilon / num_actions
        p = torch.full_like(rand_prob, scores)

        greedy_prob = 1 - self.epsilon + rand_prob
        p[argmax] = greedy_prob

        m = torch.distributions.Categorical(probs=p)
        raw_action = m.sample()
        action = F.one_hot(raw_action, num_actions)
        assert action.shape == (batch_size, num_actions)
        log_prob = m.log_prob(raw_action)
        assert log_prob.shape == (batch_size,)
        return rlt.ActorOutput(action=action, log_prob=log_prob) 
開發者ID:facebookresearch,項目名稱:ReAgent,代碼行數:24,代碼來源:discrete_sampler.py

示例8: next_inputs

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def next_inputs(self, embedding_fn: EmbeddingFn,
                    time: int, outputs: torch.Tensor,
                    sample_ids: torch.LongTensor) -> NextInputTuple:
        del outputs  # unused by next_inputs_fn
        if self._use_finish:
            hard_ids = torch.argmax(sample_ids, dim=-1)
            finished = (hard_ids == self._end_token)
        else:
            finished = torch.zeros_like(self._start_tokens, dtype=torch_bool)
        if self._stop_gradient:
            sample_ids = sample_ids.detach()

        indices = torch.arange(sample_ids.size(-1), device=sample_ids.device)
        times = torch.full_like(indices, time + 1)
        embeddings = embedding_fn(indices, times)

        next_inputs = torch.matmul(sample_ids, embeddings)
        return (finished, next_inputs) 
開發者ID:asyml,項目名稱:texar-pytorch,代碼行數:20,代碼來源:decoder_helpers.py

示例9: drop_word

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def drop_word(self, words):
        """
        按照設定隨機將words設置為unknown_index。

        :param torch.LongTensor words: batch_size x max_len
        :return:
        """
        if self.word_dropout > 0 and self.training:
            with torch.no_grad():
                if self._word_sep_index:  # 不能drop sep
                    sep_mask = words.eq(self._word_sep_index)
                mask = torch.full_like(words, fill_value=self.word_dropout, dtype=torch.float, device=words.device)
                mask = torch.bernoulli(mask).eq(1)  # dropout_word越大,越多位置為1
                pad_mask = words.ne(0)
                mask = pad_mask.__and__(mask)  # pad的位置不為unk
                words = words.masked_fill(mask, self._word_unk_index)
                if self._word_sep_index:
                    words.masked_fill_(sep_mask, self._word_sep_index)
        return words 
開發者ID:fastnlp,項目名稱:fastHan,代碼行數:21,代碼來源:bert.py

示例10: _tensorize_baseline

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def _tensorize_baseline(
    inputs: Tuple[Tensor, ...], baselines: Tuple[Union[int, float, Tensor], ...]
) -> Tuple[Tensor, ...]:
    def _tensorize_single_baseline(baseline, input):
        if isinstance(baseline, (int, float)):
            return torch.full_like(input, baseline)
        if input.shape[0] > baseline.shape[0] and baseline.shape[0] == 1:
            return torch.cat([baseline] * input.shape[0])
        return baseline

    assert isinstance(inputs, tuple) and isinstance(baselines, tuple), (
        "inputs and baselines must"
        "have tuple type but found baselines: {} and inputs: {}".format(
            type(baselines), type(inputs)
        )
    )
    return tuple(
        _tensorize_single_baseline(baseline, input)
        for baseline, input in zip(baselines, inputs)
    ) 
開發者ID:pytorch,項目名稱:captum,代碼行數:22,代碼來源:common.py

示例11: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def __init__(self, args, dictionary):
        super().__init__(args)
        self.dictionary = dictionary
        self.seed = args.seed

        # add mask token
        self.mask_idx = dictionary.add_symbol('<mask>')
        assert len(dictionary) % 8 == 0

        mask_idx = 0
        pad_idx = 1
        seq = torch.arange(args.tokens_per_sample) + pad_idx + 1
        mask = torch.arange(2, args.tokens_per_sample, 7)  # ~15%
        src = seq.clone()
        src[mask] = mask_idx
        tgt = torch.full_like(seq, pad_idx)
        tgt[mask] = seq[mask]

        self.dummy_src = src
        self.dummy_tgt = tgt 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:22,代碼來源:dummy_masked_lm.py

示例12: _get_model

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def _get_model(self, dtype=torch.float):
        state_dict = {
            "mean_module.constant": torch.tensor([-0.0066]),
            "covar_module.raw_outputscale": torch.tensor(1.0143),
            "covar_module.base_kernel.raw_lengthscale": torch.tensor([[-0.99]]),
            "covar_module.base_kernel.lengthscale_prior.concentration": torch.tensor(
                3.0
            ),
            "covar_module.base_kernel.lengthscale_prior.rate": torch.tensor(6.0),
            "covar_module.outputscale_prior.concentration": torch.tensor(2.0),
            "covar_module.outputscale_prior.rate": torch.tensor(0.1500),
        }
        train_x = torch.linspace(0, 1, 10, device=self.device, dtype=dtype).unsqueeze(
            -1
        )
        train_y = torch.sin(train_x * (2 * math.pi))
        noise = torch.tensor(NEI_NOISE, device=self.device, dtype=dtype)
        train_y += noise
        train_yvar = torch.full_like(train_y, 0.25 ** 2)
        model = FixedNoiseGP(train_X=train_x, train_Y=train_y, train_Yvar=train_yvar)
        model.load_state_dict(state_dict)
        model.to(train_x)
        model.eval()
        return model 
開發者ID:pytorch,項目名稱:botorch,代碼行數:26,代碼來源:test_analytic.py

示例13: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def __init__(self, probs=None, logits=None, validate_args=None):
        if probs is not None:
            new_probs = torch.zeros_like(probs, dtype=torch.float)
            new_probs[probs == probs.max(dim=-1, keepdim=True)[0]] = 1.0
            probs = new_probs
        elif logits is not None:
            new_logits = torch.full_like(logits, -1e8, dtype=torch.float)
            new_logits[logits == logits.max(dim=-1, keepdim=True)[0]] = 1.0
            logits = new_logits

        super().__init__(probs=probs, logits=logits, validate_args=validate_args) 
開發者ID:ConvLab,項目名稱:ConvLab,代碼行數:13,代碼來源:distribution.py

示例14: _filter_boxes

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def _filter_boxes(self, bbox, last, gt):
        """Only keep boxes with positive height and width, and not-gt.
        """
        last_bbox = last.bbox
        gt_bbox = gt.bbox
        ws = bbox[:, 2] - bbox[:, 0] + 1
        hs = bbox[:, 3] - bbox[:, 1] + 1
        for i in range(gt_bbox.shape[0]):
            last_bbox = torch.where(last_bbox == gt_bbox[i], torch.full_like(last_bbox, -1), last_bbox)
        s = sum([last_bbox[:, 0], last_bbox[:, 1], last_bbox[:, 2], last_bbox[:, 3]])
        keep = np.where((ws.cpu() > 0) & (hs.cpu() > 0) & (s.cpu() > 0))[0]
        return keep 
開發者ID:soeaver,項目名稱:Parsing-R-CNN,代碼行數:14,代碼來源:inference.py

示例15: _match_to_lbl

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import full_like [as 別名]
def _match_to_lbl(anchors, bbx, match):
        pos, neg = match >= 0, match == -1

        # Objectness labels from matching tensor
        obj_lbl = torch.full_like(match, -1)
        obj_lbl[neg] = 0
        obj_lbl[pos] = 1

        # Bounding box regression labels from matching tensor
        bbx_lbl = anchors.new_zeros(len(bbx), anchors.size(0), anchors.size(1))
        for i, (pos_i, bbx_i, match_i) in enumerate(zip(pos, bbx, match)):
            if pos_i.any():
                bbx_lbl[i, pos_i] = calculate_shift(anchors[pos_i], bbx_i[match_i[pos_i]])

        return obj_lbl, bbx_lbl 
開發者ID:mapillary,項目名稱:seamseg,代碼行數:17,代碼來源:rpn.py


注:本文中的torch.full_like方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。