當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.empty_like方法代碼示例

本文整理匯總了Python中torch.empty_like方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.empty_like方法的具體用法?Python torch.empty_like怎麽用?Python torch.empty_like使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.empty_like方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def __init__(self, pos_inds, neg_inds, bboxes, gt_bboxes, assign_result,
                 gt_flags):
        self.pos_inds = pos_inds
        self.neg_inds = neg_inds
        self.pos_bboxes = bboxes[pos_inds]
        self.neg_bboxes = bboxes[neg_inds]
        self.pos_is_gt = gt_flags[pos_inds]

        self.num_gts = gt_bboxes.shape[0]
        self.pos_assigned_gt_inds = assign_result.gt_inds[pos_inds] - 1

        if gt_bboxes.numel() == 0:
            # hack for index error case
            assert self.pos_assigned_gt_inds.numel() == 0
            self.pos_gt_bboxes = torch.empty_like(gt_bboxes).view(-1, 4)
        else:
            if len(gt_bboxes.shape) < 2:
                gt_bboxes = gt_bboxes.view(-1, 4)

            self.pos_gt_bboxes = gt_bboxes[self.pos_assigned_gt_inds, :]

        if assign_result.labels is not None:
            self.pos_gt_labels = assign_result.labels[pos_inds]
        else:
            self.pos_gt_labels = None 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:27,代碼來源:sampling_result.py

示例2: tforward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def tforward(self, disp0, im, std=None):
    self.pattern = self.pattern.to(disp0.device)
    self.uv0 = self.uv0.to(disp0.device)

    uv0 = self.uv0.expand(disp0.shape[0], *self.uv0.shape[1:])
    uv1 = torch.empty_like(uv0)
    uv1[...,0] = uv0[...,0] - disp0.contiguous().view(disp0.shape[0],-1)
    uv1[...,1] = uv0[...,1]

    uv1[..., 0] = 2 * (uv1[..., 0] / (self.im_width-1) - 0.5)
    uv1[..., 1] = 2 * (uv1[..., 1] / (self.im_height-1) - 0.5)
    uv1 = uv1.view(-1, self.im_height, self.im_width, 2).clone()
    pattern = self.pattern.expand(disp0.shape[0], *self.pattern.shape[1:])
    pattern_proj = torch.nn.functional.grid_sample(pattern, uv1, padding_mode='border')
    mask = torch.ones_like(im)
    if std is not None:
      mask = mask*std

    diff = torchext.photometric_loss(pattern_proj.contiguous(), im.contiguous(), 9, self.loss_type, self.loss_eps)
    val = (mask*diff).sum() / mask.sum()
    return val, pattern_proj 
開發者ID:autonomousvision,項目名稱:connecting_the_dots,代碼行數:23,代碼來源:networks.py

示例3: backward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def backward(self, grad_output):
        norm, std, weight = self.saved_tensors
        grad_weight = torch.empty_like(weight)
        grad_bias = torch.empty_like(weight)
        grad_input = torch.empty_like(grad_output)
        grad_output3d = grad_output.view(
            grad_output.size(0), grad_output.size(1), -1)
        grad_input3d = grad_input.view_as(grad_output3d)
        ext_module.sync_bn_backward_param(grad_output3d, norm, grad_weight,
                                          grad_bias)
        # all reduce
        if self.group_size > 1:
            dist.all_reduce(grad_weight, group=self.group)
            dist.all_reduce(grad_bias, group=self.group)
            grad_weight /= self.group_size
            grad_bias /= self.group_size
        ext_module.sync_bn_backward_data(grad_output3d, weight, grad_weight,
                                         grad_bias, norm, std, grad_input3d)
        return grad_input, None, None, grad_weight, grad_bias, \
            None, None, None, None 
開發者ID:open-mmlab,項目名稱:mmcv,代碼行數:22,代碼來源:sync_bn.py

示例4: swap_swa_param

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def swap_swa_param(self):
        r"""Swaps the values of the optimized variables and swa buffers.
        It's meant to be called in the end of training to use the collected
        swa running averages. It can also be used to evaluate the running
        averages during training; to continue training `swap_swa_sgd`
        should be called again.
        """
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                if 'swa_buffer' not in param_state:
                    # If swa wasn't applied we don't swap params
                    warnings.warn(
                        "SWA wasn't applied to param {}; skipping it".format(p))
                    continue
                buf = param_state['swa_buffer']
                tmp = torch.empty_like(p.data)
                tmp.copy_(p.data)
                p.data.copy_(buf)
                buf.copy_(tmp) 
開發者ID:JDAI-CV,項目名稱:fast-reid,代碼行數:22,代碼來源:swa.py

示例5: hard_neg_mining_loss

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def hard_neg_mining_loss(scores, labels, neg_ratio=5):

    # Flatten tensors along the spatial dimensions
    scores = scores.flatten(2, 3)
    labels = labels.flatten(2, 3)
    count = labels.size(-1)

    # Rank negative locations by the predicted confidence
    _, inds = (scores.sigmoid() * (~labels).float()).sort(-1, descending=True)
    ordinals = torch.arange(count, out=inds.new_empty(count)).expand_as(inds)
    rank = torch.empty_like(inds)
    rank.scatter_(-1, inds, ordinals)

    # Include only positive locations + N most confident negative locations
    num_pos = labels.long().sum(dim=-1, keepdim=True)
    num_neg = (num_pos + 1) * neg_ratio
    mask = (labels | (rank < num_neg)).float()

    # Apply cross entropy loss
    return F.binary_cross_entropy_with_logits(
        scores, labels.float(), mask, reduction='sum') 
開發者ID:tom-roddick,項目名稱:oft,代碼行數:23,代碼來源:loss.py

示例6: score_partial_

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def score_partial_(self, y, next_token, state, x):
        """Score interface for both full and partial scorer.

        Args:
            y: previous char
            next_token: next token need to be score
            state: previous state
            x: encoded feature

        Returns:
            tuple[torch.Tensor, List[Any]]: Tuple of
                batchfied scores for next token with shape of `(n_batch, n_vocab)`
                and next state list for ys.

        """
        out_state = kenlm.State()
        ys = self.chardict[y[-1]] if y.shape[0] > 1 else "<s>"
        self.lm.BaseScore(state, ys, out_state)
        scores = torch.empty_like(next_token, dtype=x.dtype, device=y.device)
        for i, j in enumerate(next_token):
            scores[i] = self.lm.BaseScore(
                out_state, self.chardict[j], self.tmpkenlmstate
            )
        return scores, out_state 
開發者ID:espnet,項目名稱:espnet,代碼行數:26,代碼來源:ngram.py

示例7: preload

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def preload(self):
        try:
            self.next_input, self.next_target = next(self.loader)
        except StopIteration:
            self.next_input = None
            self.next_target = None
            return
        # if record_stream() doesn't work, another option is to make sure device inputs are created
        # on the main stream.
        # self.next_input_gpu = torch.empty_like(self.next_input, device='cuda')
        # self.next_target_gpu = torch.empty_like(self.next_target, device='cuda')
        # Need to make sure the memory allocated for next_* is not still in use by the main stream
        # at the time we start copying to next_*:
        # self.stream.wait_stream(torch.cuda.current_stream())
        with torch.cuda.stream(self.stream):
            self.next_input = self.next_input.cuda(non_blocking=True)
            self.next_target = self.next_target.cuda(non_blocking=True)
            self.next_input = self.normalize(self.next_input)
            if self.is_cutout:
                self.next_input = self.cutout(self.next_input) 
開發者ID:JaminFong,項目名稱:DenseNAS,代碼行數:22,代碼來源:prefetch_data.py

示例8: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def forward(self, inputs):
    while True:
      gumbels = -torch.empty_like(self.arch_parameters).exponential_().log()
      logits  = (self.arch_parameters.log_softmax(dim=1) + gumbels) / self.tau
      probs   = nn.functional.softmax(logits, dim=1)
      index   = probs.max(-1, keepdim=True)[1]
      one_h   = torch.zeros_like(logits).scatter_(-1, index, 1.0)
      hardwts = one_h - probs.detach() + probs
      if (torch.isinf(gumbels).any()) or (torch.isinf(probs).any()) or (torch.isnan(probs).any()):
        continue
      else: break

    feature = self.stem(inputs)
    for i, cell in enumerate(self.cells):
      if isinstance(cell, SearchCell):
        feature = cell.forward_gdas(feature, hardwts, index)
      else:
        feature = cell(feature)
    out = self.lastact(feature)
    out = self.global_pooling( out )
    out = out.view(out.size(0), -1)
    logits = self.classifier(out)

    return out, logits 
開發者ID:D-X-Y,項目名稱:AutoDL-Projects,代碼行數:26,代碼來源:search_model_gdas.py

示例9: select2withP

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def select2withP(logits, tau, just_prob=False, num=2, eps=1e-7):
  if tau <= 0:
    new_logits = logits
    probs = nn.functional.softmax(new_logits, dim=1)
  else       :
    while True: # a trick to avoid the gumbels bug
      gumbels = -torch.empty_like(logits).exponential_().log()
      new_logits = (logits.log_softmax(dim=1) + gumbels) / tau
      probs = nn.functional.softmax(new_logits, dim=1)
      if (not torch.isinf(gumbels).any()) and (not torch.isinf(probs).any()) and (not torch.isnan(probs).any()): break

  if just_prob: return probs

  #with torch.no_grad(): # add eps for unexpected torch error
  #  probs = nn.functional.softmax(new_logits, dim=1)
  #  selected_index = torch.multinomial(probs + eps, 2, False)
  with torch.no_grad(): # add eps for unexpected torch error
    probs          = probs.cpu()
    selected_index = torch.multinomial(probs + eps, num, False).to(logits.device)
  selected_logit = torch.gather(new_logits, 1, selected_index)
  selcted_probs  = nn.functional.softmax(selected_logit, dim=1)
  return selected_index, selcted_probs 
開發者ID:D-X-Y,項目名稱:AutoDL-Projects,代碼行數:24,代碼來源:SoftSelect.py

示例10: test_fft

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def test_fft(self, backend):
        x = torch.randn(2, 2, 2)

        y = torch.empty_like(x)
        y[0, 0, :] = x[0, 0, :] + x[0, 1, :] + x[1, 0, :] + x[1, 1, :]
        y[0, 1, :] = x[0, 0, :] - x[0, 1, :] + x[1, 0, :] - x[1, 1, :]
        y[1, 0, :] = x[0, 0, :] + x[0, 1, :] - x[1, 0, :] - x[1, 1, :]
        y[1, 1, :] = x[0, 0, :] - x[0, 1, :] - x[1, 0, :] + x[1, 1, :]

        z = backend.fft(x, direction='C2C')

        assert torch.allclose(y, z)

        z = backend.fft(x, direction='C2C', inverse=True)

        z = z * 4.0

        assert torch.allclose(y, z)

        z = backend.fft(x, direction='C2R', inverse=True)

        z = z * 4.0

        assert z.shape == x.shape[:-1]
        assert torch.allclose(y[..., 0], z) 
開發者ID:kymatio,項目名稱:kymatio,代碼行數:27,代碼來源:test_torch_scattering2d.py

示例11: swap_swa_sgd

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def swap_swa_sgd(self):
        r"""Swaps the values of the optimized variables and swa buffers.

        It's meant to be called in the end of training to use the collected
        swa running averages. It can also be used to evaluate the running
        averages during training; to continue training `swap_swa_sgd`
        should be called again.
        """
        for group in self.param_groups:
            for p in group['params']:
                param_state = self.state[p]
                if 'swa_buffer' not in param_state:
                    # If swa wasn't applied we don't swap params
                    warnings.warn(
                        "SWA wasn't applied to param {}; skipping it".format(p))
                    continue
                buf = param_state['swa_buffer']
                tmp = torch.empty_like(p.data)
                tmp.copy_(p.data)
                p.data.copy_(buf)
                buf.copy_(tmp) 
開發者ID:ELEKTRONN,項目名稱:elektronn3,代碼行數:23,代碼來源:swa.py

示例12: add_noise

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def add_noise(data: torch.Tensor, noise_type: str,
              out: Optional[torch.Tensor] = None, **kwargs) -> torch.Tensor:
    """
    Add noise to input

    Args:
        data: input data
        noise_type: supports all inplace functions of a pytorch tensor
        out: if provided, result is saved in here
        kwargs: keyword arguments passed to generating function

    Returns:
        torch.Tensor: data with added noise

    See Also:
        :func:`torch.Tensor.normal_`, :func:`torch.Tensor.exponential_`
    """
    if not noise_type.endswith('_'):
        noise_type = noise_type + '_'
    noise_tensor = torch.empty_like(data, requires_grad=False)
    getattr(noise_tensor, noise_type)(**kwargs)
    return torch.add(data, noise_tensor, out=out) 
開發者ID:PhoenixDL,項目名稱:rising,代碼行數:24,代碼來源:intensity.py

示例13: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def forward(self, **data) -> dict:
        """
        Args:
            data: dict with tensors

        Returns:
            dict: dict with augmented data
        """
        kwargs = {}
        for k in self.property_names:
            kwargs[k] = getattr(self, k)

        kwargs.update(self.kwargs)
        for _key in self.keys:
            out = torch.empty_like(data[_key])
            for _i in range(data[_key].shape[0]):
                out[_i] = self.augment_fn(data[_key][_i], out=out[_i], **kwargs)
            data[_key] = out
        return data 
開發者ID:PhoenixDL,項目名稱:rising,代碼行數:21,代碼來源:abstract.py

示例14: _forward_alpha

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def _forward_alpha(self, emissions, M):
        Tt, B, Ts = emissions.size()
        alpha = utils.fill_with_neg_inf(torch.empty_like(emissions))  # Tt, B, Ts
        # initialization  t=1
        initial = torch.empty_like(alpha[0]).fill_(-math.log(Ts))  # log(1/Ts)
        # initial = utils.fill_with_neg_inf(torch.empty_like(alpha[0])) 
        # initial[:, 0] = 0
        alpha[0] = emissions[0] + initial
        # print('Initialize alpha:', alpha[0])
        # induction
        for i in range(1, Tt):
            alpha[i] = torch.logsumexp(alpha[i-1].unsqueeze(-1) + M[i-1], dim=1)
            alpha[i] = alpha[i] + emissions[i]
            # print('Emissions@', i, emissions[i])
            # print('alpha@',i, alpha[i])
        return alpha 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:18,代碼來源:hmm_controls.py

示例15: fill_controls_emissions_grid

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import empty_like [as 別名]
def fill_controls_emissions_grid(self, controls, emissions, indices, src_length):
        """
        Return controls (C) and emissions (E) covering all the grid
        C : Tt, N, Ts, 2
        E : Tt, N, Ts
        """
        N = controls[0].size(0)
        tgt_length = len(controls)
        Cread = controls[0].new_zeros((tgt_length, src_length, N, 1))
        Cwrite = utils.fill_with_neg_inf(torch.empty_like(Cread))
        triu_mask = torch.triu(controls[0].new_ones(tgt_length, src_length), 1).byte()
        triu_mask = triu_mask.unsqueeze(-1).unsqueeze(-1).expand(-1, -1, N, 1)
        Cwrite.masked_fill_(triu_mask, 0)
        C = torch.cat((Cread, Cwrite), dim=-1)
        E = utils.fill_with_neg_inf(emissions[0].new(tgt_length, src_length, N))
        for t, (subC, subE) in enumerate(zip(controls, emissions)):
            select = [indices[t]]
            C[t].index_put_(select, subC.transpose(0, 1))
            E[t].index_put_(select, subE.transpose(0, 1))
        return C.transpose(1, 2), E.transpose(1, 2) 
開發者ID:elbayadm,項目名稱:attn2d,代碼行數:22,代碼來源:dynamic_controls.py


注:本文中的torch.empty_like方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。