本文整理匯總了Python中torch.diagonal方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.diagonal方法的具體用法?Python torch.diagonal怎麽用?Python torch.diagonal使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類torch
的用法示例。
在下文中一共展示了torch.diagonal方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: test_lkj_covariance_prior_log_prob_hetsd
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def test_lkj_covariance_prior_log_prob_hetsd(self, cuda=False):
device = torch.device("cuda") if cuda else torch.device("cpu")
a = torch.tensor([exp(-1), exp(-2)], device=device)
b = torch.tensor([exp(1), exp(2)], device=device)
sd_prior = SmoothedBoxPrior(a, b)
prior = LKJCovariancePrior(2, torch.tensor(0.5, device=device), sd_prior)
S = torch.eye(2, device=device)
self.assertAlmostEqual(prior.log_prob(S).item(), -4.71958, places=4)
S = torch.stack([S, torch.tensor([[1.0, 0.5], [0.5, 1]], device=S.device)])
self.assertTrue(approx_equal(prior.log_prob(S), torch.tensor([-4.71958, -4.57574], device=S.device)))
with self.assertRaises(ValueError):
prior.log_prob(torch.eye(3, device=device))
# For eta=1.0 log_prob is flat over all covariance matrices
prior = LKJCovariancePrior(2, torch.tensor(1.0, device=device), sd_prior)
marginal_sd = torch.diagonal(S, dim1=-2, dim2=-1).sqrt()
log_prob_expected = prior.correlation_prior.C + prior.sd_prior.log_prob(marginal_sd)
self.assertTrue(approx_equal(prior.log_prob(S), log_prob_expected))
示例2: norm_to_lognorm
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def norm_to_lognorm(mu: Tensor, Cov: Tensor) -> Tuple[Tensor, Tensor]:
"""Compute mean and covariance of a log-MVN from its MVN sufficient statistics
If `X ~ N(mu, Cov)` and `Y = exp(X)`, then `Y` is log-normal with
mu_ln_{i} = exp(mu_{i} + 0.5 * Cov_{ii})
Cov_ln_{ij} = exp(mu_{i} + mu_{j} + 0.5 * (Cov_{ii} + Cov_{jj})) *
(exp(Cov_{ij}) - 1)
Args:
mu: A `batch_shape x n` mean vector of the Normal distribution.
Cov: A `batch_shape x n x n` covariance matrix of the Normal distribution.
Returns:
A two-tuple containing:
- The `batch_shape x n` mean vector of the log-Normal distribution.
- The `batch_shape x n x n` covariance matrix of the log-Normal
distribution.
"""
diag = torch.diagonal(Cov, dim1=-1, dim2=-2)
b = mu + 0.5 * diag
mu_ln = torch.exp(b)
Cov_ln = (torch.exp(Cov) - 1) * torch.exp(b.unsqueeze(-1) + b.unsqueeze(-2))
return mu_ln, Cov_ln
示例3: _components
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def _components(self) -> Dict[Tuple[str, str, str], Tuple[Tensor, Tensor]]:
states_per_measure = defaultdict(list)
for state_belief in self.state_beliefs:
for m, measure in enumerate(self.design.measures):
H = state_belief.H[:, m, :].data
m = H * state_belief.means.data
std = H * torch.diagonal(state_belief.covs.data, dim1=-2, dim2=-1).sqrt()
states_per_measure[measure].append((m, std))
out = {}
for measure, means_and_stds in states_per_measure.items():
means, stds = zip(*means_and_stds)
means = torch.stack(means).permute(1, 0, 2)
stds = torch.stack(stds).permute(1, 0, 2)
for s, (process_name, state_element) in enumerate(self.design.state_elements):
if ~torch.isclose(means[:, :, s].abs().max(), torch.zeros(1)):
out[(measure, process_name, state_element)] = (means[:, :, s], stds[:, :, s])
return out
示例4: test_lkj_covariance_prior_log_prob
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def test_lkj_covariance_prior_log_prob(self, cuda=False):
device = torch.device("cuda") if cuda else torch.device("cpu")
sd_prior = SmoothedBoxPrior(exp(-1), exp(1))
if cuda:
sd_prior = sd_prior.cuda()
prior = LKJCovariancePrior(2, torch.tensor(0.5, device=device), sd_prior)
S = torch.eye(2, device=device)
self.assertAlmostEqual(prior.log_prob(S).item(), -3.59981, places=4)
S = torch.stack([S, torch.tensor([[1.0, 0.5], [0.5, 1]], device=S.device)])
self.assertTrue(approx_equal(prior.log_prob(S), torch.tensor([-3.59981, -3.45597], device=S.device)))
with self.assertRaises(ValueError):
prior.log_prob(torch.eye(3, device=device))
# For eta=1.0 log_prob is flat over all covariance matrices
prior = LKJCovariancePrior(2, torch.tensor(1.0, device=device), sd_prior)
marginal_sd = torch.diagonal(S, dim1=-2, dim2=-1).sqrt()
log_prob_expected = prior.correlation_prior.C + prior.sd_prior.log_prob(marginal_sd)
self.assertTrue(approx_equal(prior.log_prob(S), log_prob_expected))
示例5: _is_valid_correlation_matrix
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def _is_valid_correlation_matrix(Sigma, tol=1e-6):
"""Check if supplied matrix is a valid correlation matrix
A matrix is a valid correlation matrix if it is positive semidefinite, and
if all diagonal elements are equal to 1.
Args:
Sigma: A n x n correlation matrix, or a batch of b correlation matrices
with shape b x n x n
tol: The tolerance with which to check unit value of the diagonal elements
Returns:
True if Sigma is a valid correlation matrix, False otherwise (in batch
mode, all matrices in the batch need to be valid correlation matrices)
"""
pdef = torch.all(constraints.positive_definite.check(Sigma))
return pdef and all(torch.all(torch.abs(S.diag() - 1) < tol) for S in Sigma.view(-1, *Sigma.shape[-2:]))
示例6: _is_valid_correlation_matrix_cholesky_factor
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def _is_valid_correlation_matrix_cholesky_factor(L, tol=1e-6):
"""Check if supplied matrix is a Cholesky factor of a valid correlation matrix
A matrix is a Cholesky fator of a valid correlation matrix if it is lower
triangular, has positive diagonal, and unit row-sum
Args:
L: A n x n lower-triangular matrix, or a batch of b lower-triangular
matrices with shape b x n x n
tol: The tolerance with which to check positivity of the diagonal and
unit-sum of the rows
Returns:
True if L is a Cholesky factor of a valid correlation matrix, False
otherwise (in batch mode, all matrices in the batch need to be
Cholesky factors of valid correlation matrices)
"""
unit_row_length = torch.all((torch.norm(L, dim=-1) - 1).abs() < tol)
return unit_row_length and torch.all(constraints.lower_cholesky.check(L))
示例7: deprecate_task_noise_corr
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def deprecate_task_noise_corr(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs):
if prefix + "task_noise_corr_factor" in state_dict:
# Remove after 1.0
warnings.warn(
"Loading a deprecated parameterization of _MultitaskGaussianLikelihoodBase. Consider re-saving your model.",
OldVersionWarning,
)
# construct the task correlation matrix from the factors using the old parameterization
corr_factor = state_dict.pop(prefix + "task_noise_corr_factor").squeeze(0)
corr_diag = state_dict.pop(prefix + "task_noise_corr_diag").squeeze(0)
num_tasks, rank = corr_factor.shape[-2:]
M = corr_factor.matmul(corr_factor.transpose(-1, -2))
idx = torch.arange(M.shape[-1], dtype=torch.long, device=M.device)
M[..., idx, idx] += corr_diag
sem_inv = 1 / torch.diagonal(M, dim1=-2, dim2=-1).sqrt().unsqueeze(-1)
C = M * sem_inv.matmul(sem_inv.transpose(-1, -2))
# perform a Cholesky decomposition and extract the required entries
L = torch.cholesky(C)
tidcs = torch.tril_indices(num_tasks, rank)[:, 1:]
task_noise_corr = L[..., tidcs[0], tidcs[1]]
state_dict[prefix + "task_noise_corr"] = task_noise_corr
示例8: lognorm_to_norm
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def lognorm_to_norm(mu: Tensor, Cov: Tensor) -> Tuple[Tensor, Tensor]:
"""Compute mean and covariance of a MVN from those of the associated log-MVN
If `Y` is log-normal with mean mu_ln and covariance Cov_ln, then
`X ~ N(mu_n, Cov_n)` with
Cov_n_{ij} = log(1 + Cov_ln_{ij} / (mu_ln_{i} * mu_n_{j}))
mu_n_{i} = log(mu_ln_{i}) - 0.5 * log(1 + Cov_ln_{ii} / mu_ln_{i}**2)
Args:
mu: A `batch_shape x n` mean vector of the log-Normal distribution.
Cov: A `batch_shape x n x n` covariance matrix of the log-Normal
distribution.
Returns:
A two-tuple containing:
- The `batch_shape x n` mean vector of the Normal distribution
- The `batch_shape x n x n` covariance matrix of the Normal distribution
"""
Cov_n = torch.log(1 + Cov / (mu.unsqueeze(-1) * mu.unsqueeze(-2)))
mu_n = torch.log(mu) - 0.5 * torch.diagonal(Cov_n, dim1=-1, dim2=-2)
return mu_n, Cov_n
示例9: exact_matrix_logarithm_trace
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def exact_matrix_logarithm_trace(Fx, x):
"""
Computes slow-ass Tr(Ln(d(Fx)/dx))
:param Fx: output of f(x)
:param x: input
:return: Tr(Ln(I + df/dx))
"""
bs = Fx.size(0)
outVector = torch.sum(Fx, 0).view(-1)
outdim = outVector.size()[0]
indim = x.view(bs, -1).size()
jac = torch.empty([bs, outdim, indim[1]], dtype=torch.float)
# for each output Fx[i] compute d(Fx[i])/d(x)
for i in range(outdim):
zero_gradients(x)
jac[:, i, :] = torch.autograd.grad(outVector[i], x,
retain_graph=True)[0].view(bs, outdim)
jac = jac.cpu().numpy()
iden = np.eye(jac.shape[1])
log_jac = np.stack([logm(jac[i] + iden) for i in range(bs)])
trace_jac = np.diagonal(log_jac, axis1=1, axis2=2).sum(1)
return trace_jac
示例10: power_series_full_jac_exact_trace
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def power_series_full_jac_exact_trace(Fx, x, k):
"""
Fast-boi Tr(Ln(d(Fx)/dx)) using power-series approximation with full
jacobian and exact trace
:param Fx: output of f(x)
:param x: input
:param k: number of power-series terms to use
:return: Tr(Ln(I + df/dx))
"""
_, jac = compute_log_det(x, Fx)
jacPower = jac
summand = torch.zeros_like(jacPower)
for i in range(1, k+1):
if i > 1:
jacPower = torch.matmul(jacPower, jac)
if (i + 1) % 2 == 0:
summand += jacPower / (np.float(i))
else:
summand -= jacPower / (np.float(i))
trace = torch.diagonal(summand, dim1=1, dim2=2).sum(1)
return trace
示例11: _apply_loss
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def _apply_loss(d, d_gt):
"""
LOSS CALCULATION OF THE BATCH
Arguments:
----------
- d: Computed displacements
- d_gt: Ground truth displacements
Returns:
--------
- loss: calculate loss according to the specified loss function
"""
# Set all pixel entries to 0 whose displacement magnitude is bigger than 10px
pixel_thresh = 10
dispMagnitude = torch.sqrt(torch.pow(d_gt[:,:,0],2) + torch.pow(d_gt[:,:,1], 2)).unsqueeze(-1).expand(-1,-1,2)
idx = dispMagnitude > pixel_thresh
z = torch.zeros(dispMagnitude.shape)
d = torch.where(idx, z, d)
d_gt = torch.where(idx, z, d_gt)
# Calculate loss according to formula in paper
return torch.sum(torch.sqrt(torch.diagonal(torch.bmm(d - d_gt, (d-d_gt).permute(0,2,1)), dim1=-2, dim2=-1)), dim = 1)
示例12: __init__
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def __init__(
self,
num_tasks,
rank=0,
task_correlation_prior=None,
batch_shape=torch.Size(),
noise_prior=None,
noise_constraint=None,
):
"""
Args:
num_tasks (int): Number of tasks.
rank (int): The rank of the task noise covariance matrix to fit. If `rank` is set to 0,
then a diagonal covariance matrix is fit.
task_correlation_prior (:obj:`gpytorch.priors.Prior`): Prior to use over the task noise correlaton matrix.
Only used when `rank` > 0.
"""
if noise_constraint is None:
noise_constraint = GreaterThan(1e-4)
noise_covar = MultitaskHomoskedasticNoise(
num_tasks=num_tasks, noise_prior=noise_prior, noise_constraint=noise_constraint, batch_shape=batch_shape
)
super().__init__(
num_tasks=num_tasks,
noise_covar=noise_covar,
rank=rank,
task_correlation_prior=task_correlation_prior,
batch_shape=batch_shape,
)
self.register_parameter(name="raw_noise", parameter=torch.nn.Parameter(torch.zeros(*batch_shape, 1)))
self.register_constraint("raw_noise", noise_constraint)
示例13: tobit_probs
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def tobit_probs(mean: Tensor,
cov: Tensor,
lower: Optional[Tensor] = None,
upper: Optional[Tensor] = None) -> Tuple[Tensor, Tensor]:
# CDF not well behaved at tails, truncate
clamp = lambda z: torch.clamp(z, -5., 5.)
if upper is None:
upper = torch.empty_like(mean)
upper[:] = float('inf')
if lower is None:
lower = torch.empty_like(mean)
lower[:] = float('-inf')
std = torch.diagonal(cov, dim1=-2, dim2=-1)
probs_up = torch.zeros_like(mean)
is_cens_up = torch.isfinite(upper)
upper_z = (upper[is_cens_up] - mean[is_cens_up]) / std[is_cens_up]
probs_up[is_cens_up] = 1. - std_normal.cdf(clamp(upper_z))
probs_lo = torch.zeros_like(mean)
is_cens_lo = torch.isfinite(lower)
lower_z = (lower[is_cens_lo] - mean[is_cens_lo]) / std[is_cens_lo]
probs_lo[is_cens_lo] = std_normal.cdf(clamp(lower_z))
return probs_lo, probs_up
示例14: forward
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def forward(self, src, adj, tgt_seq, binary_tgt,return_attns=False,int_preds=False):
batch_size = src[0].size(0)
src_seq, src_pos = src
if self.decoder_type in ['sa_m','rnn_m']:
tgt_seq = tgt_seq[:, :-1]
enc_output, *enc_self_attns = self.encoder(src_seq, adj, src_pos,return_attns=return_attns)
dec_output, *dec_output2 = self.decoder(tgt_seq,src_seq,enc_output,return_attns=return_attns,int_preds=int_preds)
if self.decoder_type == 'rnn_m':
seq_logit = dec_output
elif self.decoder_type == 'mlp':
seq_logit = dec_output
else:
seq_logit = self.tgt_word_proj(dec_output)
if self.decoder_type == 'graph':
seq_logit = torch.diagonal(seq_logit,0,1,2)
if int_preds:
intermediate_preds = []
tgt_word_proj_copy = self.tgt_word_proj.linear.weight.data.detach().repeat(batch_size,1,1)
for int_idx,int_out in enumerate(dec_output2[0][:-1]):
int_out = torch.bmm(int_out,tgt_word_proj_copy.transpose(1,2))
intermediate_preds += [torch.diagonal(int_out,0,1,2)]
return seq_logit.view(-1, seq_logit.size(-1)),enc_output, intermediate_preds
elif return_attns:
return seq_logit.view(-1,seq_logit.size(-1)),enc_output,enc_self_attns,dec_output2
else:
return seq_logit.view(-1,seq_logit.size(-1)),enc_output,None
示例15: generate_labels
# 需要導入模塊: import torch [as 別名]
# 或者: from torch import diagonal [as 別名]
def generate_labels(pairs, rel_dict):
pool = ThreadPool(8)
def func(pair):
tmp = rel_dict.get((pair[0], pair[1]), [0])
out = np.zeros(cfg.MODEL.NUM_RELATIONS, dtype=np.int32)
if pair[0] != -1 and pair[1] != -1: # If pair = (-1,-1) then this pair is diagonal pair, we don't need the labels
out[tmp] = 1
return out
results = pool.map(func, pairs)
pool.close()
pool.join()
results = np.stack(results)
return results