當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.cumprod方法代碼示例

本文整理匯總了Python中torch.cumprod方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.cumprod方法的具體用法?Python torch.cumprod怎麽用?Python torch.cumprod使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.cumprod方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: exclusive_cumprod

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def exclusive_cumprod(tensor, dim: int, eps: float = 1e-10):
    """
    Implementing exclusive cumprod.
    There is cumprod in pytorch, however there is no exclusive mode.
    cumprod(x) = [x1, x1x2, x2x3x4, ..., prod_{i=1}^n x_i]
    exclusive means cumprod(x) = [1, x1, x1x2, x1x2x3, ..., prod_{i=1}^{n-1} x_i]
    """
    tensor_size = list(tensor.size())
    tensor_size[dim] = 1
    return_tensor = safe_cumprod(
        torch.cat([torch.ones(tensor_size).type_as(tensor), tensor], dim=dim), dim=dim, eps=eps
    )

    if dim == 0:
        return return_tensor[:-1]
    elif dim == 1:
        return return_tensor[:, :-1]
    elif dim == 2:
        return return_tensor[:, :, :-1]
    else:
        raise RuntimeError("Cumprod on dimension 3 and more is not implemented") 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:23,代碼來源:functions.py

示例2: safe_cumprod

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def safe_cumprod(tensor, dim: int, eps: float = 1e-10):
    """
    An implementation of cumprod to prevent precision issue.
    cumprod(x)
    = [x1, x1x2, x1x2x3, ....]
    = [exp(log(x1)), exp(log(x1) + log(x2)), exp(log(x1) + log(x2) + log(x3)), ...]
    = exp(cumsum(log(x)))
    """

    if (tensor + eps < 0).any().item():
        raise RuntimeError(
            "Safe cumprod can only take non-negative tensors as input."
            "Consider use torch.cumprod if you want to calculate negative values."
        )

    log_tensor = torch.log(tensor + eps)
    cumsum_log_tensor = torch.cumsum(log_tensor, dim)
    exp_cumsum_log_tensor = torch.exp(cumsum_log_tensor)
    return exp_cumsum_log_tensor 
開發者ID:pytorch,項目名稱:fairseq,代碼行數:21,代碼來源:functions.py

示例3: fake_cumprod

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def fake_cumprod(vb):
    """
    args:
        vb:  [hei x wid]
          -> NOTE: we are lazy here so now it only supports cumprod along wid
    """
    # real_cumprod = torch.cumprod(vb.data, 1)
    vb = vb.unsqueeze(0)
    mul_mask_vb = Variable(torch.zeros(vb.size(2), vb.size(1), vb.size(2))).type_as(vb)
    for i in range(vb.size(2)):
       mul_mask_vb[i, :, :i+1] = 1
    add_mask_vb = 1 - mul_mask_vb
    vb = vb.expand_as(mul_mask_vb) * mul_mask_vb + add_mask_vb
    # vb = torch.prod(vb, 2).transpose(0, 2)                # 0.1.12
    vb = torch.prod(vb, 2, keepdim=True).transpose(0, 2)    # 0.2.0
    # print(real_cumprod - vb.data) # NOTE: checked, ==0
    return vb 
開發者ID:jingweiz,項目名稱:pytorch-dnc,代碼行數:19,代碼來源:fake_ops.py

示例4: allocate

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def allocate(self, usage, write_gate):
    # ensure values are not too small prior to cumprod.
    usage = δ + (1 - δ) * usage
    batch_size = usage.size(0)
    # free list
    sorted_usage, φ = T.topk(usage, self.mem_size, dim=1, largest=False)

    # cumprod with exclusive=True
    # https://discuss.pytorch.org/t/cumprod-exclusive-true-equivalences/2614/8
    v = var(sorted_usage.data.new(batch_size, 1).fill_(1))
    cat_sorted_usage = T.cat((v, sorted_usage), 1)
    prod_sorted_usage = T.cumprod(cat_sorted_usage, 1)[:, :-1]

    sorted_allocation_weights = (1 - sorted_usage) * prod_sorted_usage.squeeze()

    # construct the reverse sorting index https://stackoverflow.com/questions/2483696/undo-or-reverse-argsort-python
    _, φ_rev = T.topk(φ, k=self.mem_size, dim=1, largest=False)
    allocation_weights = sorted_allocation_weights.gather(1, φ_rev.long())

    return allocation_weights.unsqueeze(1), usage 
開發者ID:ixaxaar,項目名稱:pytorch-dnc,代碼行數:22,代碼來源:memory.py

示例5: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def forward(self, c):
        self.eval += 1
        fx = torch.mean(self.sigmod(self.x), 1)
        # fx = self.nc - torch.sum(c * xx, 0)  # onemax like
        fx = self.nc - torch.cumprod(c * fx, 0).sum()  # leading ones like
        fx += 1e-8 * torch.sum(self.x ** 2)
        return fx, fx 
開發者ID:shirakawas,項目名稱:ASNG-NAS,代碼行數:9,代碼來源:fxc.py

示例6: dice_objective

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def dice_objective(self):
        self_logprobs = torch.stack(self.self_logprobs, dim=1)
        other_logprobs = torch.stack(self.other_logprobs, dim=1)
        values = torch.stack(self.values, dim=1)
        rewards = torch.stack(self.rewards, dim=1)

        # apply discount:
        cum_discount = torch.cumprod(hp.gamma * torch.ones(*rewards.size()), dim=1)/hp.gamma
        discounted_rewards = rewards * cum_discount
        discounted_values = values * cum_discount

        # stochastics nodes involved in rewards dependencies:
        dependencies = torch.cumsum(self_logprobs + other_logprobs, dim=1)

        # logprob of each stochastic nodes:
        stochastic_nodes = self_logprobs + other_logprobs

        # dice objective:
        dice_objective = torch.mean(torch.sum(magic_box(dependencies) * discounted_rewards, dim=1))

        if hp.use_baseline:
            # variance_reduction:
            baseline_term = torch.mean(torch.sum((1 - magic_box(stochastic_nodes)) * discounted_values, dim=1))
            dice_objective = dice_objective + baseline_term

        return -dice_objective # want to minimize -objective 
開發者ID:alexis-jacq,項目名稱:LOLA_DiCE,代碼行數:28,代碼來源:ipd_DiCE.py

示例7: _allocation

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def _allocation(self, usage_vb, epsilon=1e-6):
        """
        computes allocation by sorting usage, a = a_t[\phi_t[j]]
        variables needed:
            usage_vb: [batch_size x mem_hei]
                   -> indicating current memory usage, this is equal to u_t in
                      the paper when we only have one write head, but for
                      multiple write heads, one should update the usage while
                      iterating through the write heads to take into account the
                      allocation returned by this function
        returns:
            alloc_vb: [batch_size x num_write_heads x mem_hei]
        """
        # ensure values are not too small prior to cumprod
        usage_vb = epsilon + (1 - epsilon) * usage_vb
        # NOTE: we sort usage in ascending order
        sorted_usage_vb, indices_vb = torch.topk(usage_vb, k=self.mem_hei, dim=1, largest=False)
        # to imitate tf.cumrprod(exclusive=True) https://discuss.pytorch.org/t/cumprod-exclusive-true-equivalences/2614/8
        cat_sorted_usage_vb = torch.cat((Variable(torch.ones(self.batch_size, 1)).type(self.dtype), sorted_usage_vb), 1)[:, :-1]
        # TODO: seems we have to wait for this PR: https://github.com/pytorch/pytorch/pull/1439
        prod_sorted_usage_vb = fake_cumprod(cat_sorted_usage_vb)
        # prod_sorted_usage_vb = torch.cumprod(cat_sorted_usage_vb, dim=1) # TODO: use this once the PR is ready
        # alloc_weight_vb = (1 - sorted_usage_vb) * prod_sorted_usage_vb  # equ. (1)            # 0.1.12
        alloc_weight_vb = (1 - sorted_usage_vb) * prod_sorted_usage_vb.squeeze()  # equ. (1)    # 0.2.0
        _, indices_vb = torch.topk(indices_vb, k=self.mem_hei, dim=1, largest=False)
        alloc_weight_vb = alloc_weight_vb.gather(1, indices_vb)
        return alloc_weight_vb 
開發者ID:jingweiz,項目名稱:pytorch-dnc,代碼行數:29,代碼來源:dynamic_write_head.py

示例8: exclusive_cumprod

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def exclusive_cumprod(x):
    """Exclusive cumulative product [a, b, c] => [1, a, a * b].

        Args:
            x (FloatTensor): `[B, H, qlen, klen]`
        Returns:
            x (FloatTensor): `[B, H, qlen, klen]`

    """
    return torch.cumprod(torch.cat([x.new_ones(x.size(0), x.size(1), x.size(2), 1),
                                    x[:, :, :, :-1]], dim=-1), dim=-1) 
開發者ID:hirofumi0810,項目名稱:neural_sp,代碼行數:13,代碼來源:mocha.py

示例9: cumprod

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def cumprod(a, axis, dtype=None, out=None):
    """
    Return the cumulative product of elements along a given axis.

    Parameters
    ----------
    a : DNDarray
        Input array.
    axis : int
        Axis along which the cumulative product is computed.
    dtype : dtype, optional
        Type of the returned array, as well as of the accumulator in which
        the elements are multiplied.  If *dtype* is not specified, it
        defaults to the dtype of `a`, unless `a` has an integer dtype with
        a precision less than that of the default platform integer.  In
        that case, the default platform integer is used instead.
    out : DNDarray, optional
        Alternative output array in which to place the result. It must
        have the same shape and buffer length as the expected output
        but the type of the resulting values will be cast if necessary.

    Returns
    -------
    cumprod : DNDarray
        A new array holding the result is returned unless `out` is
        specified, in which case a reference to out is returned.

    Examples
    --------
    >>> a = ht.full((3,3), 2)
    >>> ht.cumprod(a, 0)
    tensor([[2., 2., 2.],
            [4., 4., 4.],
            [8., 8., 8.])
    """
    return operations.__cum_op(a, torch.cumprod, MPI.PROD, torch.mul, 1, axis, dtype, out)


# Alias support 
開發者ID:helmholtz-analytics,項目名稱:heat,代碼行數:41,代碼來源:arithmetics.py

示例10: tor_err_at_ks

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def tor_err_at_ks(sys_sorted_labels, ks=None, multi_level_rele=True, max_rele_level=None):
    '''
    :param sys_sorted_labels: the standard labels sorted in descending order according to predicted relevance scores
    :param ks:
    :param multi_level_rele:
    :param max_rele_level:
    :return:
    '''
    valid_max = sys_sorted_labels.size(0)
    used_ks = [k for k in ks if k <= valid_max] if valid_max < max(ks) else ks

    max_cutoff = max(used_ks)
    inds = torch.from_numpy(np.asarray(used_ks) - 1)
    if multi_level_rele:
        positions = torch.arange(max_cutoff) + 1.0
        expt_ranks = 1.0 / positions    # expected stop positions

        tor_max_rele = torch.Tensor([max_rele_level]).float()
        satis_pros = (torch.pow(2.0, sys_sorted_labels[0:max_cutoff]) - 1.0)/torch.pow(2.0, tor_max_rele)
        non_satis_pros = torch.ones(max_cutoff) - satis_pros
        cum_non_satis_pros = torch.cumprod(non_satis_pros, dim=0)

        cascad_non_satis_pros = positions
        cascad_non_satis_pros[1:max_cutoff] = cum_non_satis_pros[0:max_cutoff-1]
        expt_satis_ranks = expt_ranks * satis_pros * cascad_non_satis_pros  # w.r.t. all rank positions
        err_at_ranks = torch.cumsum(expt_satis_ranks, dim=0)

        err_at_ks = err_at_ranks[inds]
        if valid_max < max(ks):
            padded_err_at_ks = torch.zeros(len(ks))
            padded_err_at_ks[0:len(used_ks)] = err_at_ks
            return padded_err_at_ks
        else:
            return err_at_ks
    else:
        raise NotImplementedError 
開發者ID:pt-ranking,項目名稱:pt-ranking.github.io,代碼行數:38,代碼來源:metric.py

示例11: torch_ideal_err

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def torch_ideal_err(sorted_labels, k=10, point=True, gpu=False):
	assert sorted_labels.size(0) >= k

	max_label = torch.max(sorted_labels)

	labels = sorted_labels[0:k]
	satis_pros = (torch.pow(2.0, labels) - 1.0) / torch.pow(2.0, max_label)

	unsatis_pros = torch.ones_like(labels) - satis_pros
	cum_unsatis_pros = torch.cumprod(unsatis_pros, dim=0)

	if gpu:
		ranks = torch.arange(k).type(tensor) + 1.0
		expt_ranks = 1.0 / ranks
	else:
		ranks = torch.arange(k) + 1.0
		expt_ranks = 1.0 / ranks

	cascad_unsatis_pros = ranks
	cascad_unsatis_pros[1:k] = cum_unsatis_pros[0:k-1]

	expt_satis_ranks = expt_ranks * satis_pros * cascad_unsatis_pros  # w.r.t. all rank positions

	if point: # a specific position
		ideal_err = torch.sum(expt_satis_ranks, dim=0)
		return ideal_err

	else:
		ideal_err_at_ks = torch.cumsum(expt_satis_ranks, dim=0)
		return ideal_err_at_ks 
開發者ID:pt-ranking,項目名稱:pt-ranking.github.io,代碼行數:32,代碼來源:adhoc_metric.py

示例12: torch_batch_ideal_err

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def torch_batch_ideal_err(batch_sorted_labels, k=10, gpu=False, point=True):
	assert batch_sorted_labels.size(1) > k

	batch_max = torch.max(batch_sorted_labels, dim=1)

	batch_labels = batch_sorted_labels[:, 0:k]
	batch_satis_pros = (torch.pow(2.0, batch_labels) - 1.0) / torch.pow(2.0, batch_max)

	batch_unsatis_pros = torch.ones(batch_labels) - batch_satis_pros
	batch_cum_unsatis_pros = torch.cumprod(batch_unsatis_pros, dim=1)

	positions = torch.arange(k) + 1.0
	positions = positions.view(1, -1)
	positions = torch.repeat_interleave(positions, batch_sorted_labels.size(0), dim=0)

	batch_expt_ranks = 1.0 / positions

	cascad_unsatis_pros = positions
	cascad_unsatis_pros[:, 1:k] = batch_cum_unsatis_pros[:, 0:k-1]

	expt_satis_ranks = batch_expt_ranks * batch_satis_pros * cascad_unsatis_pros  # w.r.t. all rank positions

	if point:
		batch_errs = torch.sum(expt_satis_ranks, dim=1)
		return batch_errs
	else:
		batch_err_at_ks = torch.cumsum(expt_satis_ranks, dim=1)
		return batch_err_at_ks 
開發者ID:pt-ranking,項目名稱:pt-ranking.github.io,代碼行數:30,代碼來源:adhoc_metric.py

示例13: torch_nerr_at_ks

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def torch_nerr_at_ks(sys_sorted_labels, ideal_sorted_labels, ks=None, multi_level_rele=True):
	'''
	:param sys_sorted_labels: the standard labels sorted in descending order according to predicted relevance scores
	:param ks:
	:param multi_level_rele:
	:return:
	'''
	valid_max = sys_sorted_labels.size(0)
	used_ks = [k for k in ks if k <= valid_max] if valid_max < max(ks) else ks

	max_cutoff = max(used_ks)
	inds = torch.from_numpy(np.asarray(used_ks) - 1)
	if multi_level_rele:
		positions = torch.arange(max_cutoff) + 1.0
		expt_ranks = 1.0 / positions    # expected stop positions

		tor_max_rele = torch.max(sys_sorted_labels)
		satis_pros = (torch.pow(2.0, sys_sorted_labels[0:max_cutoff]) - 1.0)/torch.pow(2.0, tor_max_rele)
		non_satis_pros = torch.ones(max_cutoff) - satis_pros
		cum_non_satis_pros = torch.cumprod(non_satis_pros, dim=0)

		cascad_non_satis_pros = positions
		cascad_non_satis_pros[1:max_cutoff] = cum_non_satis_pros[0:max_cutoff-1]
		expt_satis_ranks = expt_ranks * satis_pros * cascad_non_satis_pros  # w.r.t. all rank positions
		err_at_ks = torch.cumsum(expt_satis_ranks, dim=0)
		#print(err_at_ks)

		ideal_err_at_ks = torch_ideal_err(ideal_sorted_labels, k=max_cutoff, point=False)
		tmp_nerr_at_ks = err_at_ks/ideal_err_at_ks

		nerr_at_ks = tmp_nerr_at_ks[inds]
		if valid_max < max(ks):
			padded_nerr_at_ks = torch.zeros(len(ks))
			padded_nerr_at_ks[0:len(used_ks)] = nerr_at_ks
			return padded_nerr_at_ks
		else:
			return nerr_at_ks
	else:
		raise NotImplementedError 
開發者ID:pt-ranking,項目名稱:pt-ranking.github.io,代碼行數:41,代碼來源:adhoc_metric.py

示例14: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def __call__(self, x):
        '''
        Evaluates E_S[softmax_{customers} min_{i \in S} dist(customer, i)] where 
        the expectation is over the set of facility locations S. Every 
        location is included in S independently with probability x_i. 
        '''
        x_sort = x[self.order]
        probs = 1 - torch.cumprod(1 - x_sort, dim=1)
        vals = self.dmax + (self.m*probs).sum(dim=1)
        if self.hardmax:
            return vals.max()
        weights = torch.softmax(self.temp*vals, dim=0)
        return torch.dot(vals, weights) 
開發者ID:bwilder0,項目名稱:clusternet,代碼行數:15,代碼來源:kcenter.py

示例15: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import cumprod [as 別名]
def forward(self, emb, parser_state):
        emb_last, cum_gate = parser_state
        ntimestep = emb.size(0)

        emb_last = torch.cat([emb_last, emb], dim=0)
        emb = emb_last.transpose(0, 1).transpose(1, 2)  # bsz, ninp, ntimestep + nlookback

        gates = self.gate(emb)  # bsz, 2, ntimestep
        gate = gates[:, 0, :]
        gate_next = gates[:, 1, :]
        cum_gate = torch.cat([cum_gate, gate], dim=1)
        gate_hat = torch.stack([cum_gate[:, i:i + ntimestep] for i in range(self.nslots, 0, -1)],
                               dim=2)  # bsz, ntimestep, nslots

        if self.hard:
            memory_gate = (F.hardtanh((gate[:, :, None] - gate_hat) / self.resolution * 2 + 1) + 1) / 2
        else:
            memory_gate = F.sigmoid(
                (gate[:, :, None] - gate_hat) / self.resolution * 10 + 5)  # bsz, ntimestep, nslots
        memory_gate = torch.cumprod(memory_gate, dim=2)  # bsz, ntimestep, nlookback+1
        memory_gate = torch.unbind(memory_gate, dim=1)

        if self.hard:
            memory_gate_next = (F.hardtanh((gate_next[:, :, None] - gate_hat) / self.resolution * 2 + 1) + 1) / 2
        else:
            memory_gate_next = F.sigmoid(
                (gate_next[:, :, None] - gate_hat) / self.resolution * 10 + 5)  # bsz, ntimestep, nslots
        memory_gate_next = torch.cumprod(memory_gate_next, dim=2)  # bsz, ntimestep, nlookback+1
        memory_gate_next = torch.unbind(memory_gate_next, dim=1)

        return (memory_gate, memory_gate_next), gate, (emb_last[-self.nlookback:], cum_gate[:, -self.nslots:]) 
開發者ID:nyu-mll,項目名稱:PRPN-Analysis,代碼行數:33,代碼來源:ParsingNetwork.py


注:本文中的torch.cumprod方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。