當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.atan2方法代碼示例

本文整理匯總了Python中torch.atan2方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.atan2方法的具體用法?Python torch.atan2怎麽用?Python torch.atan2使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.atan2方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def __call__(self, data):
        (row, col), pos, pseudo = data.edge_index, data.pos, data.edge_attr
        assert pos.dim() == 2 and pos.size(1) == 2

        cart = pos[col] - pos[row]

        rho = torch.norm(cart, p=2, dim=-1).view(-1, 1)

        theta = torch.atan2(cart[..., 1], cart[..., 0]).view(-1, 1)
        theta = theta + (theta < 0).type_as(theta) * (2 * PI)

        if self.norm:
            rho = rho / (rho.max() if self.max is None else self.max)
            theta = theta / (2 * PI)

        polar = torch.cat([rho, theta], dim=-1)

        if pseudo is not None and self.cat:
            pseudo = pseudo.view(-1, 1) if pseudo.dim() == 1 else pseudo
            data.edge_attr = torch.cat([pseudo, polar.type_as(pos)], dim=-1)
        else:
            data.edge_attr = polar

        return data 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:26,代碼來源:polar.py

示例2: delta2box_rotated

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def delta2box_rotated(deltas, anchors, size, stride):
    'Convert deltas from anchors to boxes'

    anchors_wh = anchors[:, 2:4] - anchors[:, :2] + 1
    ctr = anchors[:, :2] + 0.5 * anchors_wh
    pred_ctr = deltas[:, :2] * anchors_wh + ctr
    pred_wh = torch.exp(deltas[:, 2:4]) * anchors_wh
    pred_sin = deltas[:, 4]
    pred_cos = deltas[:, 5]

    m = torch.zeros([2], device=deltas.device, dtype=deltas.dtype)
    M = (torch.tensor([size], device=deltas.device, dtype=deltas.dtype) * stride - 1)
    clamp = lambda t: torch.max(m, torch.min(t, M))
    return torch.cat([
        clamp(pred_ctr - 0.5 * pred_wh),
        clamp(pred_ctr + 0.5 * pred_wh - 1),
        torch.atan2(pred_sin, pred_cos)[:, None]
    ], 1) 
開發者ID:NVIDIA,項目名稱:retinanet-examples,代碼行數:20,代碼來源:box.py

示例3: complex_sign

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def complex_sign(t, dim=0):
    """Complex sign function value, complex dimension is dim.

    Args:
        t (tensor): A tensor where dimension dim is the complex dimension.
        dim (int, default=0): An integer indicating the complex dimension.

    Returns:
        tensor: The complex sign of t.
    """
    assert t.shape[dim] == 2

    signt = torch.atan2(t.select(dim, 1), t.select(dim, 0))
    signt = imag_exp(signt, dim=dim)

    return signt 
開發者ID:mmuckley,項目名稱:torchkbnufft,代碼行數:18,代碼來源:math.py

示例4: rotmat2quat_torch

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def rotmat2quat_torch(R):
    """
    Converts a rotation matrix to quaternion
    batch pytorch version ported from the corresponding numpy method above
    :param R: N * 3 * 3
    :return: N * 4
    """
    rotdiff = R - R.transpose(1, 2)
    r = torch.zeros_like(rotdiff[:, 0])
    r[:, 0] = -rotdiff[:, 1, 2]
    r[:, 1] = rotdiff[:, 0, 2]
    r[:, 2] = -rotdiff[:, 0, 1]
    r_norm = torch.norm(r, dim=1)
    sintheta = r_norm / 2
    r0 = torch.div(r, r_norm.unsqueeze(1).repeat(1, 3) + 0.00000001)
    t1 = R[:, 0, 0]
    t2 = R[:, 1, 1]
    t3 = R[:, 2, 2]
    costheta = (t1 + t2 + t3 - 1) / 2
    theta = torch.atan2(sintheta, costheta)
    q = Variable(torch.zeros(R.shape[0], 4)).float().cuda()
    q[:, 0] = torch.cos(theta / 2)
    q[:, 1:] = torch.mul(r0, torch.sin(theta / 2).unsqueeze(1).repeat(1, 3))

    return q 
開發者ID:wei-mao-2019,項目名稱:LearnTrajDep,代碼行數:27,代碼來源:data_utils.py

示例5: post_process_output

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def post_process_output(q_img, cos_img, sin_img, width_img):
    """
    Post-process the raw output of the GG-CNN, convert to numpy arrays, apply filtering.
    :param q_img: Q output of GG-CNN (as torch Tensors)
    :param cos_img: cos output of GG-CNN
    :param sin_img: sin output of GG-CNN
    :param width_img: Width output of GG-CNN
    :return: Filtered Q output, Filtered Angle output, Filtered Width output
    """
    q_img = q_img.cpu().numpy().squeeze()
    ang_img = (torch.atan2(sin_img, cos_img) / 2.0).cpu().numpy().squeeze()
    width_img = width_img.cpu().numpy().squeeze() * 150.0

    q_img = gaussian(q_img, 2.0, preserve_range=True)
    ang_img = gaussian(ang_img, 2.0, preserve_range=True)
    width_img = gaussian(width_img, 1.0, preserve_range=True)

    return q_img, ang_img, width_img 
開發者ID:dougsm,項目名稱:ggcnn,代碼行數:20,代碼來源:common.py

示例6: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def forward(self, b):
        '''
        Input: 
        b: bounding box        [batch, num_obj, 4]  (x1,y1,x2,y2)
        Output:
        pseudo_coord           [batch, num_obj, num_obj, 2] (rho, theta)
        '''
        batch_size, num_obj, _ = b.shape

        centers = (b[:,:,2:] + b[:,:,:2]) * 0.5

        relative_coord = centers.view(batch_size, num_obj, 1, 2) - \
                            centers.view(batch_size, 1, num_obj, 2)  # broadcast: [batch, num_obj, num_obj, 2]
        
        rho = torch.sqrt(relative_coord[:,:,:,0]**2 + relative_coord[:,:,:,1]**2)
        theta = torch.atan2(relative_coord[:,:,:,0], relative_coord[:,:,:,1])
        new_coord = torch.cat((rho.unsqueeze(-1), theta.unsqueeze(-1)), dim=-1)
        return new_coord 
開發者ID:KaihuaTang,項目名稱:VQA2.0-Recent-Approachs-2018.pytorch,代碼行數:20,代碼來源:graph_model.py

示例7: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def forward(self, x, return_rot_matrix = False):
        gx = self.gx(F.pad(x, (1,1,0, 0), 'replicate'))
        gy = self.gy(F.pad(x, (0,0, 1,1), 'replicate'))
        mag = torch.sqrt(gx * gx + gy * gy + 1e-10)
        if x.is_cuda:
            self.gk = self.gk.cuda()
        mag = mag * self.gk.unsqueeze(0).unsqueeze(0).expand_as(mag)
        ori = torch.atan2(gy,gx)
        o_big = float(self.num_ang_bins) *(ori + 1.0 * math.pi )/ (2.0 * math.pi)
        bo0_big =  torch.floor(o_big)
        wo1_big = o_big - bo0_big
        bo0_big =  bo0_big %  self.num_ang_bins
        bo1_big = (bo0_big + 1) % self.num_ang_bins
        wo0_big = (1.0 - wo1_big) * mag
        wo1_big = wo1_big * mag
        ang_bins = []
        for i in range(0, self.num_ang_bins):
            ang_bins.append(F.adaptive_avg_pool2d((bo0_big == i).float() * wo0_big, (1,1)))
        ang_bins = torch.cat(ang_bins,1).view(-1,1,self.num_ang_bins)
        ang_bins = self.angular_smooth(ang_bins)
        values, indices = ang_bins.view(-1,self.num_ang_bins).max(1)
        angle =  -((2. * float(np.pi) * indices.float() / float(self.num_ang_bins)) - float(math.pi))
        if return_rot_matrix:
            return self.get_rotation_matrix(angle)
        return angle 
開發者ID:ducha-aiki,項目名稱:affnet,代碼行數:27,代碼來源:HandCraftedModules.py

示例8: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def forward(self, input_data):
        num_batches, _, num_samples = input_data.size()

        self.num_samples = num_samples

        forward_transform = F.conv1d(input_data,
                                     self.forward_basis,
                                     stride=self.hop_length,
                                     padding=self.filter_length)
        cutoff = int((self.filter_length / 2) + 1)
        real_part = forward_transform[:, :cutoff, :]
        imag_part = forward_transform[:, cutoff:, :]

        magnitude = torch.sqrt(real_part**2 + imag_part**2)
        phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
        return magnitude, phase 
開發者ID:tiberiu44,項目名稱:TTS-Cube,代碼行數:18,代碼來源:modules.py

示例9: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def __call__(self, wav):
        with torch.no_grad():
            # STFT
            data = torch.stft(wav, n_fft=self.nfft, hop_length=self.window_shift,
                              win_length=self.window_size, window=self.window)
            data /= self.window.pow(2).sum().sqrt_()
            #mag = data.pow(2).sum(-1).log1p_()
            #ang = torch.atan2(data[:, :, 1], data[:, :, 0])
            ## {mag, phase} x n_freq_bin x n_frame
            #data = torch.cat([mag.unsqueeze_(0), ang.unsqueeze_(0)], dim=0)
            ## FxTx2 -> 2xFxT
            data = data.transpose(1, 2).transpose(0, 1)
            return data


# transformer: frame splitter 
開發者ID:jinserk,項目名稱:pytorch-asr,代碼行數:18,代碼來源:dataset.py

示例10: to_rpy

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def to_rpy(Rot):
        """Convert a rotation matrix to RPY Euler angles."""

        pitch = torch.atan2(-Rot[2, 0], torch.sqrt(Rot[0, 0]**2 + Rot[1, 0]**2))

        if isclose(pitch, np.pi / 2.):
            yaw = pitch.new_zeros(1)
            roll = torch.atan2(Rot[0, 1], Rot[1, 1])
        elif isclose(pitch, -np.pi / 2.):
            yaw = pitch.new_zeros(1)
            roll = -torch.atan2(Rot[0, 1],  Rot[1, 1])
        else:
            sec_pitch = 1. / pitch.cos()
            yaw = torch.atan2(Rot[1, 0] * sec_pitch, Rot[0, 0] * sec_pitch)
            roll = torch.atan2(Rot[2, 1] * sec_pitch, Rot[2, 2] * sec_pitch)
        return roll, pitch, yaw 
開發者ID:mbrossar,項目名稱:ai-imu-dr,代碼行數:18,代碼來源:utils_torch_filter.py

示例11: compute_euler_angles_from_rotation_matrices

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def compute_euler_angles_from_rotation_matrices(rotation_matrices):
    batch=rotation_matrices.shape[0]
    R=rotation_matrices
    sy = torch.sqrt(R[:,0,0]*R[:,0,0]+R[:,1,0]*R[:,1,0])
    singular= sy<1e-6
    singular=singular.float()
        
    x=torch.atan2(R[:,2,1], R[:,2,2])
    y=torch.atan2(-R[:,2,0], sy)
    z=torch.atan2(R[:,1,0],R[:,0,0])
    
    xs=torch.atan2(-R[:,1,2], R[:,1,1])
    ys=torch.atan2(-R[:,2,0], sy)
    zs=R[:,1,0]*0
        
    out_euler=torch.autograd.Variable(torch.zeros(batch,3).cuda())
    out_euler[:,0]=x*(1-singular)+xs*singular
    out_euler[:,1]=y*(1-singular)+ys*singular
    out_euler[:,2]=z*(1-singular)+zs*singular
        
    return out_euler

#input batch*4
#output batch*4 
開發者ID:papagina,項目名稱:RotationContinuity,代碼行數:26,代碼來源:tools.py

示例12: angle

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def angle(
        complex_tensor: Tensor
) -> Tensor:
    r"""Compute the angle of complex tensor input.

    Args:
        complex_tensor (Tensor): Tensor shape of `(..., complex=2)`

    Return:
        Tensor: Angle of a complex tensor. Shape of `(..., )`
    """
    return torch.atan2(complex_tensor[..., 1], complex_tensor[..., 0]) 
開發者ID:pytorch,項目名稱:audio,代碼行數:14,代碼來源:functional.py

示例13: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def __call__(self, data):
        (row, col), pos, pseudo = data.edge_index, data.pos, data.edge_attr
        assert pos.dim() == 2 and pos.size(1) == 3

        cart = pos[col] - pos[row]

        rho = torch.norm(cart, p=2, dim=-1).view(-1, 1)

        theta = torch.atan2(cart[..., 1], cart[..., 0]).view(-1, 1)
        theta = theta + (theta < 0).type_as(theta) * (2 * PI)

        phi = torch.acos(cart[..., 2] / rho.view(-1)).view(-1, 1)

        if self.norm:
            rho = rho / (rho.max() if self.max is None else self.max)
            theta = theta / (2 * PI)
            phi = phi / PI

        spher = torch.cat([rho, theta, phi], dim=-1)

        if pseudo is not None and self.cat:
            pseudo = pseudo.view(-1, 1) if pseudo.dim() == 1 else pseudo
            data.edge_attr = torch.cat([pseudo, spher.type_as(pos)], dim=-1)
        else:
            data.edge_attr = spher

        return data 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:29,代碼來源:spherical.py

示例14: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def forward(self, z, pos, batch=None):
        """"""
        edge_index = radius_graph(pos, r=self.cutoff, batch=batch)

        i, j, idx_i, idx_j, idx_k, idx_kj, idx_ji = self.triplets(
            edge_index, num_nodes=z.size(0))

        # Calculate distances.
        dist = (pos[i] - pos[j]).pow(2).sum(dim=-1).sqrt()

        # Calculate angles.
        pos_i = pos[idx_i]
        pos_ji, pos_ki = pos[idx_j] - pos_i, pos[idx_k] - pos_i
        a = (pos_ji * pos_ki).sum(dim=-1)
        b = torch.cross(pos_ji, pos_ki).norm(dim=-1)
        angle = torch.atan2(b, a)

        rbf = self.rbf(dist)
        sbf = self.sbf(dist, angle, idx_kj)

        # Embedding block.
        x = self.emb(z, rbf, i, j)
        P = self.output_blocks[0](x, rbf, i, num_nodes=pos.size(0))

        # Interaction blocks.
        for interaction_block, output_block in zip(self.interaction_blocks,
                                                   self.output_blocks[1:]):
            x = interaction_block(x, rbf, sbf, idx_kj, idx_ji)
            P += output_block(x, rbf, i)

        return P.sum(dim=0) if batch is None else scatter(P, batch, dim=0) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:33,代碼來源:dimenet.py

示例15: get_angle

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import atan2 [as 別名]
def get_angle(v1: Tensor, v2: Tensor) -> Tensor:
    return torch.atan2(
        torch.cross(v1, v2, dim=1).norm(p=2, dim=1), (v1 * v2).sum(dim=1)) 
開發者ID:rusty1s,項目名稱:pytorch_geometric,代碼行數:5,代碼來源:ppf_conv.py


注:本文中的torch.atan2方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。