當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.any方法代碼示例

本文整理匯總了Python中torch.any方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.any方法的具體用法?Python torch.any怎麽用?Python torch.any使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.any方法的11個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None,
                **kwargs):
        if weight is not None and not torch.any(weight > 0):
            return (pred * weight).sum()  # 0
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss = self.loss_weight * bounded_iou_loss(
            pred,
            target,
            weight,
            beta=self.beta,
            eps=self.eps,
            reduction=reduction,
            avg_factor=avg_factor,
            **kwargs)
        return loss 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:24,代碼來源:iou_loss.py

示例2: test_center_region_assigner

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def test_center_region_assigner():
    self = CenterRegionAssigner(pos_scale=0.3, neg_scale=1)
    bboxes = torch.FloatTensor([[0, 0, 10, 10], [10, 10, 20, 20], [8, 8, 9,
                                                                   9]])
    gt_bboxes = torch.FloatTensor([
        [0, 0, 11, 11],  # match bboxes[0]
        [10, 10, 20, 20],  # match bboxes[1]
        [4.5, 4.5, 5.5, 5.5],  # match bboxes[0] but area is too small
        [0, 0, 10, 10],  # match bboxes[1] and has a smaller area than gt[0]
    ])
    gt_labels = torch.LongTensor([2, 3, 4, 5])
    assign_result = self.assign(bboxes, gt_bboxes, gt_labels=gt_labels)
    assert len(assign_result.gt_inds) == 3
    assert len(assign_result.labels) == 3
    expected_gt_inds = torch.LongTensor([4, 2, 0])
    assert torch.all(assign_result.gt_inds == expected_gt_inds)
    shadowed_labels = assign_result.get_extra_property('shadowed_labels')
    # [8, 8, 9, 9] in the shadowed region of [0, 0, 11, 11] (label: 2)
    assert torch.any(shadowed_labels == torch.LongTensor([[2, 2]]))
    # [8, 8, 9, 9] in the shadowed region of [0, 0, 10, 10] (label: 5)
    assert torch.any(shadowed_labels == torch.LongTensor([[2, 5]]))
    # [0, 0, 10, 10] is already assigned to [4.5, 4.5, 5.5, 5.5].
    #   Therefore, [0, 0, 11, 11] (label: 2) is shadowed
    assert torch.any(shadowed_labels == torch.LongTensor([[0, 2]])) 
開發者ID:open-mmlab,項目名稱:mmdetection,代碼行數:26,代碼來源:test_assigner.py

示例3: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None,
                **kwargs):
        if weight is not None and not torch.any(weight > 0):
            return (pred * weight).sum()  # 0
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss = self.loss_weight * iou_loss(
            pred,
            target,
            weight,
            eps=self.eps,
            reduction=reduction,
            avg_factor=avg_factor,
            **kwargs)
        return loss 
開發者ID:xvjiarui,項目名稱:GCNet,代碼行數:23,代碼來源:iou_loss.py

示例4: __call__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def __call__(
            self,
            sample: Subject,
            num_patches: Optional[int] = None,
            ) -> Generator[Subject, None, None]:
        sample.check_consistent_shape()
        if np.any(self.patch_size > sample.spatial_shape):
            message = (
                f'Patch size {tuple(self.patch_size)} cannot be'
                f' larger than image size {tuple(sample.spatial_shape)}'
            )
            raise RuntimeError(message)
        probability_map = self.get_probability_map(sample)
        probability_map = self.process_probability_map(probability_map)
        cdf, sort_indices = self.get_cumulative_distribution_function(
            probability_map)

        patches_left = num_patches if num_patches is not None else True
        while patches_left:
            yield self.extract_patch(sample, probability_map, cdf, sort_indices)
            if num_patches is not None:
                patches_left -= 1 
開發者ID:fepegar,項目名稱:torchio,代碼行數:24,代碼來源:weighted.py

示例5: get_probability_map

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def get_probability_map(self, sample: Subject) -> torch.Tensor:
        if self.probability_map_name in sample:
            data = sample[self.probability_map_name].data
        else:
            message = (
                f'Image "{self.probability_map_name}"'
                f' not found in subject sample: {sample}'
            )
            raise KeyError(message)
        if torch.any(data < 0):
            message = (
                'Negative values found'
                f' in probability map "{self.probability_map_name}"'
            )
            raise ValueError(message)
        return data 
開發者ID:fepegar,項目名稱:torchio,代碼行數:18,代碼來源:weighted.py

示例6: test_terner_connect_sto_forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def test_terner_connect_sto_forward():
    x = torch.Tensor([1,0,0.45,-1,-0.9]).view(1,-1)

    results = list()
    for i in range(1000):
        temp_result = TernaryConnectStochastic.apply(x)
        # Tensor must have only -1 , 0 , 1 values
        assert not torch.any(torch.lt(torch.abs(temp_result-1),1e-8)*torch.lt(torch.abs(temp_result),1e-8))
        results.append(temp_result) 

    result = torch.cat(results,0 )
    result = torch.sum(result, 0)/1000
    
    assert equals(
        result,
        torch.Tensor([1,0,0.45,-1,-0.9]).view(1,-1),
        5e-2) 
開發者ID:Enderdead,項目名稱:Pytorch_Quantize_impls,代碼行數:19,代碼來源:function_test.py

示例7: _get_labels_to_tasks

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def _get_labels_to_tasks(
        self, label_names: Iterable[str], remap_labels: Dict[str, Optional[str]] = {}
    ) -> Dict[str, str]:
        """Map each label to its corresponding task outputs based on whether the task is available.

        If remap_labels specified, overrides specific label -> task mappings.
        If a label is mappied to `None`, that key is removed from the mapping.
        """
        labels_to_tasks = {}
        for label in label_names:
            # Override any existing label -> task mappings
            if label in remap_labels:
                task = remap_labels.get(label)
                # Note: task might be manually remapped to None to remove it from the labels_to_tasks
                if task is not None:
                    labels_to_tasks[label] = task

            # If available in task flows, label should map to task of same name
            elif label in self.op_sequences:
                labels_to_tasks[label] = label

        return labels_to_tasks 
開發者ID:snorkel-team,項目名稱:snorkel,代碼行數:24,代碼來源:multitask_classifier.py

示例8: __init__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def __init__(self, mean: torch.Tensor, std: torch.Tensor, inplace: bool = False):
        tensor_mean = Normalize._transform_to_tensor(mean, "mean")
        tensor_std = Normalize._transform_to_tensor(std, "std")
        Normalize._check_shape(tensor_mean, "mean")
        Normalize._check_shape(tensor_std, "std")

        if torch.any(tensor_std == 0):
            raise ValueError(
                "One or more std values are zero which would lead to division by zero."
            )

        super().__init__()

        self.register_buffer("mean", tensor_mean)
        self.register_buffer("std", tensor_std)
        self.inplace: bool = inplace 
開發者ID:szymonmaszke,項目名稱:torchlayers,代碼行數:18,代碼來源:preprocessing.py

示例9: __next__

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def __next__(self):
        # Stop criterion. For CUDA, inplace masking the array is too slow, so the matrix is
        # unchanged. On CPU, we continually modify the matrix by removing rows.
        if self.CUDA:
            if not _torch.any(self.kept_mask).item():
                raise StopIteration
        elif len(self.matrix) == 0:
            raise StopIteration

        cluster, medoid, points = self._findcluster()
        self.nclusters += 1

        for point in points:
            self.kept_mask[point] = 0

        # Remove all points that's been clustered away. Is slow it itself, but speeds up
        # distance calculation by having fewer points. Worth it on CPU, not on GPU
        if not self.CUDA:
            _vambtools.torch_inplace_maskarray(self.matrix, self.kept_mask)
            self.indices = self.indices[self.kept_mask] # no need to inplace mask small array
            self.kept_mask.resize_(len(self.matrix))
            self.kept_mask[:] = 1

        return cluster 
開發者ID:RasmussenLab,項目名稱:vamb,代碼行數:26,代碼來源:cluster.py

示例10: _normalize

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def _normalize(matrix, inplace=False):
    """Preprocess the matrix to make distance calculations faster.
    The distance functions in this module assumes input has been normalized
    and will not work otherwise.
    """
    if isinstance(matrix, _np.ndarray):
        matrix = _torch.from_numpy(matrix)

    if not inplace:
        matrix = matrix.clone()

    # If any rows are kept all zeros, the distance function will return 0.5 to all points
    # inclusive itself, which can break the code in this module
    zeromask = matrix.sum(dim=1) == 0
    matrix[zeromask] = 1/matrix.shape[1]
    matrix /= (matrix.norm(dim=1).reshape(-1, 1) * (2 ** 0.5))
    return matrix 
開發者ID:RasmussenLab,項目名稱:vamb,代碼行數:19,代碼來源:cluster.py

示例11: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import any [as 別名]
def forward(self,
                pred,
                target,
                weight=None,
                avg_factor=None,
                reduction_override=None,
                **kwargs):
        if weight is not None and not torch.any(weight > 0):
            return (pred * weight).sum()  # 0
        if weight is not None:  # iou loss is single unit
            weight = weight[:, 0]
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss = self.loss_weight * iou_loss(
            pred,
            target,
            weight,
            linear=self.linear,
            eps=self.eps,
            reduction=reduction,
            avg_factor=avg_factor,
            **kwargs)
        return loss 
開發者ID:thangvubk,項目名稱:Cascade-RPN,代碼行數:26,代碼來源:iou_loss.py


注:本文中的torch.any方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。