當前位置: 首頁>>代碼示例>>Python>>正文


Python torch.add方法代碼示例

本文整理匯總了Python中torch.add方法的典型用法代碼示例。如果您正苦於以下問題:Python torch.add方法的具體用法?Python torch.add怎麽用?Python torch.add使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在torch的用法示例。


在下文中一共展示了torch.add方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _transform

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def _transform(x, mat, maxmin):
    rot = mat[:,0:3]
    trans = mat[:,3:6]

    x = x.contiguous().view(-1, x.size()[1] , x.size()[2] * x.size()[3])

    max_val, min_val = maxmin[:,0], maxmin[:,1]
    max_val, min_val = max_val.contiguous().view(-1,1), min_val.contiguous().view(-1,1)
    max_val, min_val = max_val.repeat(1,3), min_val.repeat(1,3)
    trans, rot = _trans_rot(trans, rot)

    x1 = torch.matmul(rot,x)
    min_val1 = torch.cat((min_val, Variable(min_val.data.new(min_val.size()[0], 1).fill_(1))), dim=-1)
    min_val1 = min_val1.unsqueeze(-1)
    min_val1 = torch.matmul(trans, min_val1)

    min_val = torch.div( torch.add(torch.matmul(rot, min_val1).squeeze(-1), - min_val), torch.add(max_val, - min_val))

    min_val = min_val.mul_(255)
    x = torch.add(x1, min_val.unsqueeze(-1))

    x = x.contiguous().view(-1,3, 224,224)

    return x 
開發者ID:microsoft,項目名稱:View-Adaptive-Neural-Networks-for-Skeleton-based-Human-Action-Recognition,代碼行數:26,代碼來源:transform_cnn.py

示例2: get_loss

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def get_loss(pred, y, criterion, mtr, a=0.5):
    """
    To calculate loss
    :param pred: predicted value
    :param y: actual value
    :param criterion: nn.CrossEntropyLoss
    :param mtr: beta matrix
    """
    mtr_t = torch.transpose(mtr, 1, 2)
    aa = torch.bmm(mtr, mtr_t)
    loss_fn = 0
    for i in range(aa.size()[0]):
        aai = torch.add(aa[i, ], Variable(torch.neg(torch.eye(mtr.size()[1]))))
        loss_fn += torch.trace(torch.mul(aai, aai).data)
    loss_fn /= aa.size()[0]
    loss = torch.add(criterion(pred, y), Variable(torch.FloatTensor([loss_fn * a])))
    return loss 
開發者ID:BarnesLab,項目名稱:Patient2Vec,代碼行數:19,代碼來源:Patient2Vec.py

示例3: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, x):
        if not self.equalInOut:
            x = self.relu1(self.bn1(x))
        else:
            out = self.relu1(self.bn1(x))
        if self.equalInOut:
            out = self.relu2(self.bn2(self.conv1(out)))
        else:
            out = self.relu2(self.bn2(self.conv1(x)))
        if self.droprate > 0:
            out = F.dropout(out, p=self.droprate, training=self.training)
        out = self.conv2(out)
        if not self.equalInOut:
            return torch.add(self.convShortcut(x), out)
        else:
            return torch.add(x, out) 
開發者ID:mmazeika,項目名稱:glc,代碼行數:18,代碼來源:wideresnet.py

示例4: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, x):
        residual = x
        if self.norm is not None:
            out = self.bn(self.conv1(x))
        else:
            out = self.conv1(x)

        if self.activation is not None:
            out = self.act(out)

        if self.norm is not None:
            out = self.bn(self.conv2(out))
        else:
            out = self.conv2(out)

        out = torch.add(out, residual)
        
        if self.activation is not None:
            out = self.act(out)
            
        return out 
開發者ID:alterzero,項目名稱:STARnet,代碼行數:23,代碼來源:base_networks.py

示例5: test_train

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def test_train(self):
        self._metric.train()
        calls = [[torch.FloatTensor([0.0]), torch.LongTensor([0])],
                 [torch.FloatTensor([0.0, 0.1, 0.2, 0.3]), torch.LongTensor([0, 1, 2, 3])]]
        for i in range(len(self._states)):
            self._metric.process(self._states[i])
        self.assertEqual(2, len(self._metric_function.call_args_list))
        for i in range(len(self._metric_function.call_args_list)):
            self.assertTrue(torch.eq(self._metric_function.call_args_list[i][0][0], calls[i][0]).all)
            self.assertTrue(torch.lt(torch.abs(torch.add(self._metric_function.call_args_list[i][0][1], -calls[i][1])), 1e-12).all)
        self._metric_function.reset_mock()
        self._metric.process_final({})

        self.assertEqual(self._metric_function.call_count, 1)
        self.assertTrue(torch.eq(self._metric_function.call_args_list[0][0][1], torch.LongTensor([0, 1, 2, 3, 4])).all)
        self.assertTrue(torch.lt(torch.abs(torch.add(self._metric_function.call_args_list[0][0][0], -torch.FloatTensor([0.0, 0.1, 0.2, 0.3, 0.4]))), 1e-12).all) 
開發者ID:pytorchbearer,項目名稱:torchbearer,代碼行數:18,代碼來源:test_wrappers.py

示例6: inner_forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def inner_forward(self, st_inp, first_dimension_size):
        """Implements the forward pass layers of the algorithm."""
        x = self.bn0(st_inp) # 2d batch norm over feature dimension.
        x = self.inp_drop(x) # [b, 1, 2*hidden_size_2, hidden_size_1]
        x = self.conv2d_1(x) # [b, 32, 2*hidden_size_2-3+1, hidden_size_1-3+1]
        x = self.bn1(x) # 2d batch normalization across feature dimension
        x = torch.relu(x)
        x = self.feat_drop(x)
        x = x.view(first_dimension_size, -1) # flatten => [b, 32*(2*hidden_size_2-3+1)*(hidden_size_1-3+1)
        x = self.fc(x) # dense layer => [b, k]
        x = self.hidden_drop(x)
        if self.training:
            x = self.bn2(x) # batch normalization across the last axis
        x = torch.relu(x)
        x = torch.matmul(x, self.transpose(self.ent_embeddings.weight)) # [b, k] * [k, tot_ent] => [b, tot_ent]
        x = torch.add(x, self.b.weight) # add a bias value
        return torch.sigmoid(x) # sigmoid activation 
開發者ID:Sujit-O,項目名稱:pykg2vec,代碼行數:19,代碼來源:projection.py

示例7: _hook_tensor

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def _hook_tensor(hook_self):
        """Hooks the function torch.tensor()
        We need to do this seperately from hooking the class because internally
        torch does not pick up the change to add the args
        Args:
            hook_self: the hook itself
        """

        if "native_tensor" not in dir(hook_self.torch):
            hook_self.torch.native_tensor = hook_self.torch.tensor

        def new_tensor(*args, owner=None, id=None, register=True, **kwargs):
            current_tensor = hook_self.torch.native_tensor(*args, **kwargs)
            _apply_args(hook_self, current_tensor, owner, id)
            if register:
                current_tensor.owner.register_obj(current_tensor)

            return current_tensor

        hook_self.torch.tensor = new_tensor 
開發者ID:OpenMined,項目名稱:PySyft,代碼行數:22,代碼來源:hook.py

示例8: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, x):
        if self.filter_size > 0:
            return self.layers(x)  #image, conv, batchnorm, relu
        else:
            y = torch.add(x.unsqueeze(2), self.noise * self.level)  
            # (10, 3, 1, 32, 32) + (1, 3, 128, 32, 32) --> (10, 3, 128, 32, 32)

            if self.debug:
                print_values(x, self.noise, y, self.unique_masks)

            y = y.view(-1, self.in_channels * self.nmasks, self.input_size, self.input_size)   
            y = self.layers(y)

            if self.mix_maps:
                y = self.mix_layers(y)

            return y  #image, perturb, (relu?), conv1x1, batchnorm, relu + mix_maps (conv1x1, batchnorm relu) 
開發者ID:juefeix,項目名稱:pnn.pytorch.update,代碼行數:19,代碼來源:models.py

示例9: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, x):
        self._reset_state()

        x = self.sub_mean(x)
		# uncomment for pytorch 0.4.0
        # inter_res = self.upsample(x)
		
		# comment for pytorch 0.4.0
        inter_res = nn.functional.interpolate(x, scale_factor=self.upscale_factor, mode='bilinear', align_corners=False)

        x = self.conv_in(x)
        x = self.feat_in(x)

        outs = []
        for _ in range(self.num_steps):
            h = self.block(x)

            h = torch.add(inter_res, self.conv_out(self.out(h)))
            h = self.add_mean(h)
            outs.append(h)

        return outs # return output of every timesteps 
開發者ID:Paper99,項目名稱:SRFBN_CVPR19,代碼行數:24,代碼來源:srfbn_arch.py

示例10: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, input_tensors):
        assert len(input_tensors) == 3
        aspect_i = input_tensors[2]
        sentence = self.word_rep(input_tensors)

        length = sentence.size()[0]
        output, hidden = self.rnn_p(sentence)
        hidden = hidden[0].view(1, -1)
        output = output.view(output.size()[0], -1)

        aspect_embedding = self.AE(aspect_i)
        aspect_embedding = aspect_embedding.view(1, -1)
        aspect_embedding = aspect_embedding.expand(length, -1)
        M = F.tanh(torch.cat((self.W_h(output), self.W_v(aspect_embedding)), dim=1))
        weights = self.attn_softmax(self.w(M)).t()
        r = torch.matmul(weights, output)
        r = F.tanh(torch.add(self.W_p(r), self.W_x(hidden)))
        decoded = self.decoder_p(r)
        output = decoded
        return output 
開發者ID:moxiu2012,項目名稱:PJ_NLP,代碼行數:22,代碼來源:model.py

示例11: test_global_avg_pool_module

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def test_global_avg_pool_module(self):
        """
        Tests the global average pool module with fixed 4-d test tensors
        """
        # construct basic input
        base_tensor = torch.Tensor([[2, 1], [3, 0]])
        all_init = []
        for i in range(-2, 3):
            all_init.append(torch.add(base_tensor, i))
        init_tensor = torch.stack(all_init, dim=2)
        init_tensor = init_tensor.unsqueeze(-1)
        reference = base_tensor.unsqueeze(-1).unsqueeze(-1)

        # create module
        encr_module = crypten.nn.GlobalAveragePool().encrypt()
        self.assertTrue(encr_module.encrypted, "module not encrypted")

        # check correctness for a variety of input sizes
        for i in range(1, 10):
            input = init_tensor.repeat(1, 1, i, i)
            encr_input = crypten.cryptensor(input)
            encr_output = encr_module(encr_input)
            self._check(encr_output, reference, "GlobalAveragePool failed") 
開發者ID:facebookresearch,項目名稱:CrypTen,代碼行數:25,代碼來源:test_nn.py

示例12: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, input, ker_code):
        B, C, H, W = input.size() # I_LR batch
        B_h, C_h = ker_code.size() # Batch, Len=10
        ker_code_exp = ker_code.view((B_h, C_h, 1, 1)).expand((B_h, C_h, H, W)) #kernel_map stretch

        fea_bef = self.conv3(self.relu_conv2(self.conv2(self.relu_conv1(self.conv1(input)))))
        fea_in = fea_bef
        for i in range(self.num_blocks):
            fea_in = self.__getattr__('SFT-residual' + str(i + 1))(fea_in, ker_code_exp)
        fea_mid = fea_in
        #fea_in = self.sft_branch((fea_in, ker_code_exp))
        fea_add = torch.add(fea_mid, fea_bef)
        fea = self.upscale(self.conv_mid(self.sft(fea_add, ker_code_exp)))
        out = self.conv_output(fea)

        return torch.clamp(out, min=self.min, max=self.max) 
開發者ID:yuanjunchai,項目名稱:IKC,代碼行數:18,代碼來源:sftmd_arch.py

示例13: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, x):
        if not self.equalInOut:
            x = self.relu1(self.bn1(x))
        else:
            out = self.relu1(self.bn1(x))
        out = self.relu2(self.bn2(self.conv1(out if self.equalInOut else x)))
        if self.droprate > 0:
            out = F.dropout(out, p=self.droprate, training=self.training)
        out = self.conv2(out)
        return torch.add(x if self.equalInOut else self.convShortcut(x), out) 
開發者ID:zhunzhong07,項目名稱:Random-Erasing,代碼行數:12,代碼來源:wrn.py

示例14: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self,inputs):
		out1 = inputs
		out2 = inputs
		out2 = self.skip(out2)
		out = torch.add(out1,out2)
		return out 
開發者ID:Naman-ntc,項目名稱:3D-HourGlass-Network,代碼行數:8,代碼來源:2D_Layers.py

示例15: forward

# 需要導入模塊: import torch [as 別名]
# 或者: from torch import add [as 別名]
def forward(self, x):
        """
        :param x: Long tensor of size ``(batch_size, num_fields, embedding_size)``
        """
        embed_x_abs = torch.abs(x) # Computes the element-wise absolute value of the given input tensor.
        embed_x_afn = torch.add(embed_x_abs, 1e-7)
        # Logarithmic Transformation
        embed_x_log = torch.log1p(embed_x_afn) # torch.log1p and torch.expm1
        lnn_out = torch.matmul(self.weight, embed_x_log)
        if self.bias is not None:
            lnn_out += self.bias
        lnn_exp = torch.expm1(lnn_out)
        output = F.relu(lnn_exp).contiguous().view(-1, self.lnn_output_dim)
        return output 
開發者ID:rixwew,項目名稱:pytorch-fm,代碼行數:16,代碼來源:afn.py


注:本文中的torch.add方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。