本文整理匯總了Python中theano.tensor.sin方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.sin方法的具體用法?Python tensor.sin怎麽用?Python tensor.sin使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor
的用法示例。
在下文中一共展示了tensor.sin方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: __init__
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def __init__(self):
def f(x, u, i, terminal):
if terminal:
ctrl_cost = T.zeros_like(x[..., 0])
else:
ctrl_cost = T.square(u).sum(axis=-1)
# x: (batch_size, 8)
# x[..., 0:4]: qpos
# x[..., 4:8]: qvel, time derivatives of qpos, not used in the cost.
theta = x[..., 0] # qpos[0]: angle of joint 0
phi = x[..., 1] # qpos[1]: angle of joint 1
target_xpos = x[..., 2:4] # qpos[2:4], target x & y coordinate
body1_xpos = 0.1 * T.stack([T.cos(theta), T.sin(theta)], axis=1)
tip_xpos_incr = 0.11 * T.stack([T.cos(phi), T.sin(phi)], axis=1)
tip_xpos = body1_xpos + tip_xpos_incr
delta = tip_xpos - target_xpos
state_cost = T.sqrt(T.sum(delta * delta, axis=-1))
cost = state_cost + ctrl_cost
return cost
super().__init__(f, state_size=8, action_size=2)
示例2: test_no_leak_many_graphs
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def test_no_leak_many_graphs():
# Verify no memory leaks when creating and deleting a lot of functions
# This isn't really a unit test, you have to run it and look at top to
# see if there's a leak
for i in xrange(10000):
x = tensor.vector()
z = x
for d in range(10):
z = tensor.sin(-z + 1)
f = function([x], z, mode=Mode(optimizer=None, linker='cvm'))
if not i % 100:
print(gc.collect())
sys.stdout.flush()
gc.collect()
if 1:
f([2.0])
f([3.0])
f([4.0])
f([5.0])
示例3: augment_state
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def augment_state(cls, state):
"""Augments angular state into a non-angular state by replacing theta
with sin(theta) and cos(theta).
In this case, it converts:
[theta, theta'] -> [sin(theta), cos(theta), theta']
Args:
state: State vector [reducted_state_size].
Returns:
Augmented state size [state_size].
"""
if state.ndim == 1:
theta, theta_dot = state
else:
theta = state[..., 0].reshape(-1, 1)
theta_dot = state[..., 1].reshape(-1, 1)
return np.hstack([np.sin(theta), np.cos(theta), theta_dot])
示例4: reduce_state
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def reduce_state(cls, state):
"""Reduces a non-angular state into an angular state by replacing
sin(theta) and cos(theta) with theta.
In this case, it converts:
[sin(theta), cos(theta), theta'] -> [theta, theta']
Args:
state: Augmented state vector [state_size].
Returns:
Reduced state size [reducted_state_size].
"""
if state.ndim == 1:
sin_theta, cos_theta, theta_dot = state
else:
sin_theta = state[..., 0].reshape(-1, 1)
cos_theta = state[..., 1].reshape(-1, 1)
theta_dot = state[..., 2].reshape(-1, 1)
theta = np.arctan2(sin_theta, cos_theta)
return np.hstack([theta, theta_dot])
示例5: augment_state
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def augment_state(cls, state):
"""Augments angular state into a non-angular state by replacing theta
with sin(theta) and cos(theta).
In this case, it converts:
[x, x', theta, theta'] -> [x, x', sin(theta), cos(theta), theta']
Args:
state: State vector [reducted_state_size].
Returns:
Augmented state size [state_size].
"""
if state.ndim == 1:
x, x_dot, theta, theta_dot = state
else:
x = state[..., 0].reshape(-1, 1)
x_dot = state[..., 1].reshape(-1, 1)
theta = state[..., 2].reshape(-1, 1)
theta_dot = state[..., 3].reshape(-1, 1)
return np.hstack([x, x_dot, np.sin(theta), np.cos(theta), theta_dot])
示例6: reduce_state
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def reduce_state(cls, state):
"""Reduces a non-angular state into an angular state by replacing
sin(theta) and cos(theta) with theta.
In this case, it converts:
[x, x', sin(theta), cos(theta), theta'] -> [x, x', theta, theta']
Args:
state: Augmented state vector [state_size].
Returns:
Reduced state size [reducted_state_size].
"""
if state.ndim == 1:
x, x_dot, sin_theta, cos_theta, theta_dot = state
else:
x = state[..., 0].reshape(-1, 1)
x_dot = state[..., 1].reshape(-1, 1)
sin_theta = state[..., 2].reshape(-1, 1)
cos_theta = state[..., 3].reshape(-1, 1)
theta_dot = state[..., 4].reshape(-1, 1)
theta = np.arctan2(sin_theta, cos_theta)
return np.hstack([x, x_dot, theta, theta_dot])
示例7: gTrig_np
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def gTrig_np(x, angi):
'''
Replaces angle dimensions with their complex representation
'''
if isinstance(x, list):
x = np.array(x)
if x.ndim == 1:
x = x[None, :]
D = x.shape[1]
Da = 2*len(angi)
n = x.shape[0]
xang = np.zeros((n, Da))
xi = x[:, angi]
xang[:, ::2] = np.sin(xi)
xang[:, 1::2] = np.cos(xi)
na_dims = list(set(range(D)).difference(angi))
xnang = x[:, na_dims]
m = np.concatenate([xnang, xang], axis=1)
return m
示例8: compute_ortho_grid_inc_obl
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def compute_ortho_grid_inc_obl(self, res, inc, obl):
"""Compute the polynomial basis on the plane of the sky, accounting
for the map inclination and obliquity."""
# See NOTE on tt.mgrid bug in `compute_ortho_grid`
dx = 2.0 / (res - 0.01)
y, x = tt.mgrid[-1:1:dx, -1:1:dx]
z = tt.sqrt(1 - x ** 2 - y ** 2)
y = tt.set_subtensor(y[tt.isnan(z)], np.nan)
x = tt.reshape(x, [1, -1])
y = tt.reshape(y, [1, -1])
z = tt.reshape(z, [1, -1])
Robl = self.RAxisAngle(tt.as_tensor_variable([0.0, 0.0, 1.0]), -obl)
Rinc = self.RAxisAngle(
tt.as_tensor_variable([tt.cos(obl), tt.sin(obl), 0.0]),
-(0.5 * np.pi - inc),
)
R = tt.dot(Robl, Rinc)
xyz = tt.dot(R, tt.concatenate((x, y, z)))
x = tt.reshape(xyz[0], [1, -1])
y = tt.reshape(xyz[1], [1, -1])
z = tt.reshape(xyz[2], [1, -1])
lat = tt.reshape(0.5 * np.pi - tt.arccos(y), [1, -1])
lon = tt.reshape(tt.arctan2(x, z), [1, -1])
return tt.concatenate((lat, lon)), tt.concatenate((x, y, z))
示例9: compute_rect_grid
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def compute_rect_grid(self, res):
"""Compute the polynomial basis on a rectangular lat/lon grid."""
# See NOTE on tt.mgrid bug in `compute_ortho_grid`
dx = np.pi / (res - 0.01)
lat, lon = tt.mgrid[
-np.pi / 2 : np.pi / 2 : dx, -3 * np.pi / 2 : np.pi / 2 : 2 * dx
]
x = tt.reshape(tt.cos(lat) * tt.cos(lon), [1, -1])
y = tt.reshape(tt.cos(lat) * tt.sin(lon), [1, -1])
z = tt.reshape(tt.sin(lat), [1, -1])
R = self.RAxisAngle(tt.as_tensor_variable([1.0, 0.0, 0.0]), -np.pi / 2)
return (
tt.concatenate(
(
tt.reshape(lat, [1, -1]),
tt.reshape(lon + 0.5 * np.pi, [1, -1]),
)
),
tt.dot(R, tt.concatenate((x, y, z))),
)
示例10: sin
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def sin(x):
return T.sin(x)
示例11: get_output_for
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def get_output_for(self, input, **kwargs):
X = input / T.exp(self.log_sigma)
f = T.exp(-.5 * T.sum(X ** 2, axis=1))[:, np.newaxis]
angles = T.dot(X, self.freqs.T)
return T.concatenate([T.sin(angles) * f, T.cos(angles) * f], axis=1)
示例12: sin
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def sin(x):
"""
Elemwise sinus of `x`.
"""
# see decorator for function body
示例13: test_no_leak_many_call_nonlazy
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def test_no_leak_many_call_nonlazy():
# Verify no memory leaks when calling a function a lot of times
# This isn't really a unit test, you have to run it and look at top to
# see if there's a leak.
def build_graph(x, depth=5):
z = x
for d in range(depth):
z = tensor.sin(-z + 1)
return z
def time_linker(name, linker):
steps_a = 10
x = tensor.dvector()
a = build_graph(x, steps_a)
f_a = function([x], a,
mode=Mode(optimizer=None,
linker=linker()))
inp = numpy.random.rand(1000000)
for i in xrange(500):
f_a(inp)
print(1)
time_linker('vmLinker_C',
lambda: vm.VM_Linker(allow_gc=False, use_cloop=True))
print(2)
time_linker('vmLinker',
lambda: vm.VM_Linker(allow_gc=False, use_cloop=False))
示例14: test_opt_gpujoin_joinvectors_elemwise_then_minusone
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def test_opt_gpujoin_joinvectors_elemwise_then_minusone():
# from a bug in gpu normal sampling
_a = numpy.asarray([1, 2, 3, 4], dtype='float32')
_b = numpy.asarray([5, 6, 7, 8], dtype='float32')
a = cuda.shared_constructor(_a)
b = cuda.shared_constructor(_b)
a_prime = tensor.cos(a)
b_prime = tensor.sin(b)
c = tensor.join(0, a_prime, b_prime)
d = c[:-1]
f = theano.function([], d, mode=mode_with_gpu)
graph_nodes = f.maker.fgraph.toposort()
assert isinstance(graph_nodes[-1].op, cuda.HostFromGpu)
assert isinstance(graph_nodes[-2].op, cuda.GpuSubtensor)
assert isinstance(graph_nodes[-3].op, cuda.GpuJoin)
concat = numpy.concatenate([numpy.cos(_a), numpy.sin(_b)], axis=0)
concat = concat[:-1]
assert numpy.allclose(numpy.asarray(f()), concat)
示例15: get_output
# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import sin [as 別名]
def get_output(self, train=False):
rnorm = self.omega / np.sqrt(2*np.pi)*self.kappa
val = - self.omega**2 / (8 * self.kappa**2)
dir1 = 4 * (self._outter(self.x, tensor.cos(self.theta)) +
self._outter(self.y, tensor.sin(self.theta)))**2
dir2 = (-self._outter(self.x, tensor.sin(self.theta)) +
self._outter(self.y, tensor.cos(self.theta)))**2
ex = 1j * (self.omega * self._outter(tensor.cos(self.theta), self.x) +
self.omega * self._outter(tensor.sin(self.theta), self.y))
output = rnorm * tensor.exp(val * (dir1 + dir2)) * (tensor.exp(ex)
- tensor.exp(-self.kappa**2 / 2))
return output