當前位置: 首頁>>代碼示例>>Python>>正文


Python pool.pool_2d方法代碼示例

本文整理匯總了Python中theano.tensor.signal.pool.pool_2d方法的典型用法代碼示例。如果您正苦於以下問題:Python pool.pool_2d方法的具體用法?Python pool.pool_2d怎麽用?Python pool.pool_2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor.signal.pool的用法示例。


在下文中一共展示了pool.pool_2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: apply

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def apply(self, input_):
        """Apply the pooling (subsampling) transformation.

        Parameters
        ----------
        input_ : :class:`~tensor.TensorVariable`
            An tensor with dimension greater or equal to 2. The last two
            dimensions will be downsampled. For example, with images this
            means that the last two dimensions should represent the height
            and width of your image.

        Returns
        -------
        output : :class:`~tensor.TensorVariable`
            A tensor with the same number of dimensions as `input_`, but
            with the last two dimensions downsampled.

        """
        output = pool_2d(input_, self.pooling_size, st=self.step,
                         mode=self.mode, padding=self.padding,
                         ignore_border=self.ignore_border)
        return output 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:24,代碼來源:conv.py

示例2: set_output

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def set_output(self):
        pooled_out = pool.pool_2d(
            input=self._prev_layer.output,
            ds=self._pool_size,
            ignore_border=True,
            padding=self._padding)
        self._output = pooled_out 
開發者ID:chrischoy,項目名稱:3D-R2N2,代碼行數:9,代碼來源:layers.py

示例3: pool2d

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def pool2d(x, pool_size, strides=(1, 1), border_mode='valid',
           dim_ordering='th', pool_mode='max'):
    if border_mode == 'same':
        w_pad = pool_size[0] - 2 if pool_size[0] % 2 == 1 else pool_size[0] - 1
        h_pad = pool_size[1] - 2 if pool_size[1] % 2 == 1 else pool_size[1] - 1
        padding = (w_pad, h_pad)
    elif border_mode == 'valid':
        padding = (0, 0)
    else:
        raise Exception('Invalid border mode: ' + str(border_mode))

    if dim_ordering not in {'th', 'tf'}:
        raise Exception('Unknown dim_ordering ' + str(dim_ordering))

    if dim_ordering == 'tf':
        x = x.dimshuffle((0, 3, 1, 2))

    if pool_mode == 'max':
        pool_out = pool.pool_2d(x, ds=pool_size, st=strides,
                                ignore_border=True,
                                padding=padding,
                                mode='max')
    elif pool_mode == 'avg':
        pool_out = pool.pool_2d(x, ds=pool_size, st=strides,
                                ignore_border=True,
                                padding=padding,
                                mode='average_exc_pad')
    else:
        raise Exception('Invalid pooling mode: ' + str(pool_mode))

    if border_mode == 'same':
        expected_width = (x.shape[2] + strides[0] - 1) // strides[0]
        expected_height = (x.shape[3] + strides[1] - 1) // strides[1]

        pool_out = pool_out[:, :,
                            : expected_width,
                            : expected_height]

    if dim_ordering == 'tf':
        pool_out = pool_out.dimshuffle((0, 2, 3, 1))
    return pool_out 
開發者ID:mathDR,項目名稱:reading-text-in-the-wild,代碼行數:43,代碼來源:theano_backend.py

示例4: test_pooling_opt

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_pooling_opt():
    if not cuda.dnn.dnn_available():
        raise SkipTest(cuda.dnn.dnn_available.msg)

    x = T.fmatrix()

    f = theano.function(
        [x],
        pool_2d(x, ds=(2, 2), mode='average_inc_pad', ignore_border=True),
        mode=mode_with_gpu)

    assert any([isinstance(n.op, cuda.dnn.GpuDnnPool)
                for n in f.maker.fgraph.toposort()])

    f(numpy.zeros((10, 10), dtype='float32'))

    f = theano.function(
        [x],
        T.grad(pool_2d(x, ds=(2, 2), mode='average_inc_pad',
                       ignore_border=True).sum(), x),
        mode=mode_with_gpu.including("cudnn"))

    assert any([isinstance(n.op, cuda.dnn.GpuDnnPoolGrad)
                for n in f.maker.fgraph.toposort()])

    f(numpy.zeros((10, 10), dtype='float32')) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:28,代碼來源:test_dnn.py

示例5: test_dnn_tag

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_dnn_tag():
    """
    Test that if cudnn isn't avail we crash and that if it is avail, we use it.
    """
    x = T.ftensor4()
    old = theano.config.on_opt_error
    theano.config.on_opt_error = "raise"

    sio = StringIO()
    handler = logging.StreamHandler(sio)
    logging.getLogger('theano.compile.tests.test_dnn').addHandler(handler)
    # Silence original handler when intentionnally generating warning messages
    logging.getLogger('theano').removeHandler(theano.logging_default_handler)
    raised = False
    try:
        f = theano.function(
            [x],
            pool_2d(x, ds=(2, 2), ignore_border=True),
            mode=mode_with_gpu.including("cudnn"))
    except (AssertionError, RuntimeError):
        assert not cuda.dnn.dnn_available()
        raised = True
    finally:
        theano.config.on_opt_error = old
        logging.getLogger(
            'theano.compile.tests.test_dnn').removeHandler(handler)
        logging.getLogger('theano').addHandler(theano.logging_default_handler)

    if not raised:
        assert cuda.dnn.dnn_available()
        assert any([isinstance(n.op, cuda.dnn.GpuDnnPool)
                    for n in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:34,代碼來源:test_dnn.py

示例6: test_pooling_opt

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_pooling_opt():
    if not dnn.dnn_available(test_ctx_name):
        raise SkipTest(dnn.dnn_available.msg)

    x = T.fmatrix()

    f = theano.function(
        [x],
        pool_2d(x, ds=(2, 2), mode='average_inc_pad',
                ignore_border=True),
        mode=mode_with_gpu)

    assert any([isinstance(n.op, dnn.GpuDnnPool)
                for n in f.maker.fgraph.toposort()])

    f(numpy.zeros((10, 10), dtype='float32'))

    f = theano.function(
        [x],
        T.grad(pool_2d(x, ds=(2, 2), mode='average_inc_pad',
                       ignore_border=True).sum(),
               x),
        mode=mode_with_gpu.including("cudnn"))

    assert any([isinstance(n.op, dnn.GpuDnnPoolGrad)
                for n in f.maker.fgraph.toposort()])

    f(numpy.zeros((10, 10), dtype='float32')) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:30,代碼來源:test_dnn.py

示例7: test_dnn_tag

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_dnn_tag():
    """
    Test that if cudnn isn't avail we crash and that if it is avail, we use it.
    """
    x = T.ftensor4()
    old = theano.config.on_opt_error
    theano.config.on_opt_error = "raise"

    sio = StringIO()
    handler = logging.StreamHandler(sio)
    logging.getLogger('theano.compile.tests.test_dnn').addHandler(handler)
    # Silence original handler when intentionnally generating warning messages
    logging.getLogger('theano').removeHandler(theano.logging_default_handler)
    raised = False
    try:
        f = theano.function(
            [x],
            pool_2d(x, ds=(2, 2), ignore_border=True),
            mode=mode_with_gpu.including("cudnn"))
    except (AssertionError, RuntimeError):
        assert not dnn.dnn_available(test_ctx_name)
        raised = True
    finally:
        theano.config.on_opt_error = old
        logging.getLogger(
            'theano.compile.tests.test_dnn').removeHandler(handler)
        logging.getLogger('theano').addHandler(theano.logging_default_handler)

    if not raised:
        assert dnn.dnn_available(test_ctx_name)
        assert any([isinstance(n.op, dnn.GpuDnnPool)
                    for n in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:34,代碼來源:test_dnn.py

示例8: encoder

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def encoder(tparams, layer0_input, filter_shape, pool_size,
                      prefix='cnn_encoder'):
    
    """ filter_shape: (number of filters, num input feature maps, filter height,
                        filter width)
        image_shape: (batch_size, num input feature maps, image height, image width)
    """
    
    conv_out = conv.conv2d(input=layer0_input, filters=tparams[_p(prefix,'W')], 
                            filter_shape=filter_shape)
    
    conv_out_tanh = tensor.tanh(conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x'))
    output = pool.pool_2d(input=conv_out_tanh, ds=pool_size, ignore_border=True)

    return output.flatten(2) 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:17,代碼來源:cnn_layers.py

示例9: pool2d

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def pool2d(x, pool_size, strides=(1, 1), padding='valid',
           data_format=None, pool_mode='max'):
    data_format = normalize_data_format(data_format)

    assert pool_size[0] >= 1 and pool_size[1] >= 1

    if padding == 'same':
        w_pad = pool_size[0] - 2 if pool_size[0] > 2 and pool_size[0] % 2 == 1 else pool_size[0] - 1
        h_pad = pool_size[1] - 2 if pool_size[1] > 2 and pool_size[1] % 2 == 1 else pool_size[1] - 1
        pad = (w_pad, h_pad)
    elif padding == 'valid':
        pad = (0, 0)
    else:
        raise ValueError('Invalid border mode:', padding)

    if data_format == 'channels_last':
        x = x.dimshuffle((0, 3, 1, 2))

    if pool_mode == 'max':
        pool_out = pool.pool_2d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=pad,
                                mode='max')
    elif pool_mode == 'avg':
        pool_out = pool.pool_2d(x, ws=pool_size, stride=strides,
                                ignore_border=True,
                                pad=pad,
                                mode='average_exc_pad')
    else:
        raise ValueError('Invalid pooling mode:', pool_mode)
    if padding == 'same':
        expected_width = (x.shape[2] + strides[0] - 1) // strides[0]
        expected_height = (x.shape[3] + strides[1] - 1) // strides[1]
        pool_out = pool_out[:, :,
                            : expected_width,
                            : expected_height]

    if data_format == 'channels_last':
        pool_out = pool_out.dimshuffle((0, 2, 3, 1))
    return pool_out 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:42,代碼來源:theano_backend.py

示例10: pool_2d

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def pool_2d(x, mode="average", ws=(2, 2), stride=(2, 2)):
    import theano.sandbox.cuda as cuda
    assert cuda.dnn.dnn_available()
    return cuda.dnn.dnn_pool(x, ws=ws, stride=stride, mode=mode) 
開發者ID:CuriousAI,項目名稱:ladder,代碼行數:6,代碼來源:nn.py

示例11: maxpool_2d

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def maxpool_2d(z, in_dim, poolsize, poolstride):
    z = pool_2d(z, ds=poolsize, st=poolstride)
    output_size = tuple(Pool.out_shape(in_dim, poolsize, st=poolstride))
    return z, output_size 
開發者ID:CuriousAI,項目名稱:ladder,代碼行數:6,代碼來源:nn.py

示例12: _train_fprop

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def _train_fprop(self, state_below):
        return pool_2d(state_below, ds=self.poolsize, st=self.stride,
                       padding=self.padding, ignore_border=self.ignore_border,
                       mode=self.mode) 
開發者ID:hycis,項目名稱:Mozi,代碼行數:6,代碼來源:convolution.py

示例13: get_output_for

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def get_output_for(self, input, **kwargs):
        if self.pad == 'strictsamex':
            assert(self.stride[0] == 1)
            kk = self.pool_size[0]
            ll = int(np.ceil(kk/2.))
            # rr = kk-ll
            # pad = (ll, 0)
            pad = [(ll, 0)]

            length = input.shape[2]

            self.ignore_border = True
            input = padding.pad(input, pad, batch_ndim=2)
            pad = (0, 0)
        else:
            pad = self.pad

        pooled = pool.pool_2d(input,
                              ds=self.pool_size,
                              st=self.stride,
                              ignore_border=self.ignore_border,
                              padding=pad,
                              mode=self.mode,
                              )

        if self.pad == 'strictsamex':
            pooled = pooled[:, :, :length or None, :]

        return pooled


# add 'strictsamex' method for pad 
開發者ID:ciaua,項目名稱:clip2frame,代碼行數:34,代碼來源:layers.py

示例14: compute_tensor

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def compute_tensor(self, x):
        if self.reshape_input:
            img_width = T.cast(T.sqrt(x.shape[1]), "int32")
            x = x.reshape((x.shape[0], 1, img_width, img_width), ndim=4)

        conv_out = conv.conv2d(
            input=x,
            filters=self.W_conv,
            filter_shape=self.filter_shape,
            image_shape=None,
            border_mode=self.border_mode
        )

        pooled_out = pool.pool_2d(
            input=conv_out,
            ws=self.pool_size,
            ignore_border=True
        )

        if self.disable_pooling:
            pooled_out = conv_out

        output = self._activation_func(pooled_out + self.B_conv.dimshuffle('x', 0, 'x', 'x'))

        if self.flatten_output:
            output = output.flatten(2)
        return output 
開發者ID:zomux,項目名稱:deepy,代碼行數:29,代碼來源:conv.py

示例15: max_pool

# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def max_pool( x, size, ignore_border=False ):
    return pool_2d( x, size, ignore_border=ignore_border ) 
開發者ID:anitan0925,項目名稱:vaegan,代碼行數:4,代碼來源:functions.py


注:本文中的theano.tensor.signal.pool.pool_2d方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。