本文整理匯總了Python中theano.tensor.signal.pool.pool_2d方法的典型用法代碼示例。如果您正苦於以下問題:Python pool.pool_2d方法的具體用法?Python pool.pool_2d怎麽用?Python pool.pool_2d使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.tensor.signal.pool
的用法示例。
在下文中一共展示了pool.pool_2d方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: apply
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def apply(self, input_):
"""Apply the pooling (subsampling) transformation.
Parameters
----------
input_ : :class:`~tensor.TensorVariable`
An tensor with dimension greater or equal to 2. The last two
dimensions will be downsampled. For example, with images this
means that the last two dimensions should represent the height
and width of your image.
Returns
-------
output : :class:`~tensor.TensorVariable`
A tensor with the same number of dimensions as `input_`, but
with the last two dimensions downsampled.
"""
output = pool_2d(input_, self.pooling_size, st=self.step,
mode=self.mode, padding=self.padding,
ignore_border=self.ignore_border)
return output
示例2: set_output
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def set_output(self):
pooled_out = pool.pool_2d(
input=self._prev_layer.output,
ds=self._pool_size,
ignore_border=True,
padding=self._padding)
self._output = pooled_out
示例3: pool2d
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def pool2d(x, pool_size, strides=(1, 1), border_mode='valid',
dim_ordering='th', pool_mode='max'):
if border_mode == 'same':
w_pad = pool_size[0] - 2 if pool_size[0] % 2 == 1 else pool_size[0] - 1
h_pad = pool_size[1] - 2 if pool_size[1] % 2 == 1 else pool_size[1] - 1
padding = (w_pad, h_pad)
elif border_mode == 'valid':
padding = (0, 0)
else:
raise Exception('Invalid border mode: ' + str(border_mode))
if dim_ordering not in {'th', 'tf'}:
raise Exception('Unknown dim_ordering ' + str(dim_ordering))
if dim_ordering == 'tf':
x = x.dimshuffle((0, 3, 1, 2))
if pool_mode == 'max':
pool_out = pool.pool_2d(x, ds=pool_size, st=strides,
ignore_border=True,
padding=padding,
mode='max')
elif pool_mode == 'avg':
pool_out = pool.pool_2d(x, ds=pool_size, st=strides,
ignore_border=True,
padding=padding,
mode='average_exc_pad')
else:
raise Exception('Invalid pooling mode: ' + str(pool_mode))
if border_mode == 'same':
expected_width = (x.shape[2] + strides[0] - 1) // strides[0]
expected_height = (x.shape[3] + strides[1] - 1) // strides[1]
pool_out = pool_out[:, :,
: expected_width,
: expected_height]
if dim_ordering == 'tf':
pool_out = pool_out.dimshuffle((0, 2, 3, 1))
return pool_out
示例4: test_pooling_opt
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_pooling_opt():
if not cuda.dnn.dnn_available():
raise SkipTest(cuda.dnn.dnn_available.msg)
x = T.fmatrix()
f = theano.function(
[x],
pool_2d(x, ds=(2, 2), mode='average_inc_pad', ignore_border=True),
mode=mode_with_gpu)
assert any([isinstance(n.op, cuda.dnn.GpuDnnPool)
for n in f.maker.fgraph.toposort()])
f(numpy.zeros((10, 10), dtype='float32'))
f = theano.function(
[x],
T.grad(pool_2d(x, ds=(2, 2), mode='average_inc_pad',
ignore_border=True).sum(), x),
mode=mode_with_gpu.including("cudnn"))
assert any([isinstance(n.op, cuda.dnn.GpuDnnPoolGrad)
for n in f.maker.fgraph.toposort()])
f(numpy.zeros((10, 10), dtype='float32'))
示例5: test_dnn_tag
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_dnn_tag():
"""
Test that if cudnn isn't avail we crash and that if it is avail, we use it.
"""
x = T.ftensor4()
old = theano.config.on_opt_error
theano.config.on_opt_error = "raise"
sio = StringIO()
handler = logging.StreamHandler(sio)
logging.getLogger('theano.compile.tests.test_dnn').addHandler(handler)
# Silence original handler when intentionnally generating warning messages
logging.getLogger('theano').removeHandler(theano.logging_default_handler)
raised = False
try:
f = theano.function(
[x],
pool_2d(x, ds=(2, 2), ignore_border=True),
mode=mode_with_gpu.including("cudnn"))
except (AssertionError, RuntimeError):
assert not cuda.dnn.dnn_available()
raised = True
finally:
theano.config.on_opt_error = old
logging.getLogger(
'theano.compile.tests.test_dnn').removeHandler(handler)
logging.getLogger('theano').addHandler(theano.logging_default_handler)
if not raised:
assert cuda.dnn.dnn_available()
assert any([isinstance(n.op, cuda.dnn.GpuDnnPool)
for n in f.maker.fgraph.toposort()])
示例6: test_pooling_opt
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_pooling_opt():
if not dnn.dnn_available(test_ctx_name):
raise SkipTest(dnn.dnn_available.msg)
x = T.fmatrix()
f = theano.function(
[x],
pool_2d(x, ds=(2, 2), mode='average_inc_pad',
ignore_border=True),
mode=mode_with_gpu)
assert any([isinstance(n.op, dnn.GpuDnnPool)
for n in f.maker.fgraph.toposort()])
f(numpy.zeros((10, 10), dtype='float32'))
f = theano.function(
[x],
T.grad(pool_2d(x, ds=(2, 2), mode='average_inc_pad',
ignore_border=True).sum(),
x),
mode=mode_with_gpu.including("cudnn"))
assert any([isinstance(n.op, dnn.GpuDnnPoolGrad)
for n in f.maker.fgraph.toposort()])
f(numpy.zeros((10, 10), dtype='float32'))
示例7: test_dnn_tag
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def test_dnn_tag():
"""
Test that if cudnn isn't avail we crash and that if it is avail, we use it.
"""
x = T.ftensor4()
old = theano.config.on_opt_error
theano.config.on_opt_error = "raise"
sio = StringIO()
handler = logging.StreamHandler(sio)
logging.getLogger('theano.compile.tests.test_dnn').addHandler(handler)
# Silence original handler when intentionnally generating warning messages
logging.getLogger('theano').removeHandler(theano.logging_default_handler)
raised = False
try:
f = theano.function(
[x],
pool_2d(x, ds=(2, 2), ignore_border=True),
mode=mode_with_gpu.including("cudnn"))
except (AssertionError, RuntimeError):
assert not dnn.dnn_available(test_ctx_name)
raised = True
finally:
theano.config.on_opt_error = old
logging.getLogger(
'theano.compile.tests.test_dnn').removeHandler(handler)
logging.getLogger('theano').addHandler(theano.logging_default_handler)
if not raised:
assert dnn.dnn_available(test_ctx_name)
assert any([isinstance(n.op, dnn.GpuDnnPool)
for n in f.maker.fgraph.toposort()])
示例8: encoder
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def encoder(tparams, layer0_input, filter_shape, pool_size,
prefix='cnn_encoder'):
""" filter_shape: (number of filters, num input feature maps, filter height,
filter width)
image_shape: (batch_size, num input feature maps, image height, image width)
"""
conv_out = conv.conv2d(input=layer0_input, filters=tparams[_p(prefix,'W')],
filter_shape=filter_shape)
conv_out_tanh = tensor.tanh(conv_out + tparams[_p(prefix,'b')].dimshuffle('x', 0, 'x', 'x'))
output = pool.pool_2d(input=conv_out_tanh, ds=pool_size, ignore_border=True)
return output.flatten(2)
示例9: pool2d
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def pool2d(x, pool_size, strides=(1, 1), padding='valid',
data_format=None, pool_mode='max'):
data_format = normalize_data_format(data_format)
assert pool_size[0] >= 1 and pool_size[1] >= 1
if padding == 'same':
w_pad = pool_size[0] - 2 if pool_size[0] > 2 and pool_size[0] % 2 == 1 else pool_size[0] - 1
h_pad = pool_size[1] - 2 if pool_size[1] > 2 and pool_size[1] % 2 == 1 else pool_size[1] - 1
pad = (w_pad, h_pad)
elif padding == 'valid':
pad = (0, 0)
else:
raise ValueError('Invalid border mode:', padding)
if data_format == 'channels_last':
x = x.dimshuffle((0, 3, 1, 2))
if pool_mode == 'max':
pool_out = pool.pool_2d(x, ws=pool_size, stride=strides,
ignore_border=True,
pad=pad,
mode='max')
elif pool_mode == 'avg':
pool_out = pool.pool_2d(x, ws=pool_size, stride=strides,
ignore_border=True,
pad=pad,
mode='average_exc_pad')
else:
raise ValueError('Invalid pooling mode:', pool_mode)
if padding == 'same':
expected_width = (x.shape[2] + strides[0] - 1) // strides[0]
expected_height = (x.shape[3] + strides[1] - 1) // strides[1]
pool_out = pool_out[:, :,
: expected_width,
: expected_height]
if data_format == 'channels_last':
pool_out = pool_out.dimshuffle((0, 2, 3, 1))
return pool_out
示例10: pool_2d
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def pool_2d(x, mode="average", ws=(2, 2), stride=(2, 2)):
import theano.sandbox.cuda as cuda
assert cuda.dnn.dnn_available()
return cuda.dnn.dnn_pool(x, ws=ws, stride=stride, mode=mode)
示例11: maxpool_2d
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def maxpool_2d(z, in_dim, poolsize, poolstride):
z = pool_2d(z, ds=poolsize, st=poolstride)
output_size = tuple(Pool.out_shape(in_dim, poolsize, st=poolstride))
return z, output_size
示例12: _train_fprop
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def _train_fprop(self, state_below):
return pool_2d(state_below, ds=self.poolsize, st=self.stride,
padding=self.padding, ignore_border=self.ignore_border,
mode=self.mode)
示例13: get_output_for
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def get_output_for(self, input, **kwargs):
if self.pad == 'strictsamex':
assert(self.stride[0] == 1)
kk = self.pool_size[0]
ll = int(np.ceil(kk/2.))
# rr = kk-ll
# pad = (ll, 0)
pad = [(ll, 0)]
length = input.shape[2]
self.ignore_border = True
input = padding.pad(input, pad, batch_ndim=2)
pad = (0, 0)
else:
pad = self.pad
pooled = pool.pool_2d(input,
ds=self.pool_size,
st=self.stride,
ignore_border=self.ignore_border,
padding=pad,
mode=self.mode,
)
if self.pad == 'strictsamex':
pooled = pooled[:, :, :length or None, :]
return pooled
# add 'strictsamex' method for pad
示例14: compute_tensor
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def compute_tensor(self, x):
if self.reshape_input:
img_width = T.cast(T.sqrt(x.shape[1]), "int32")
x = x.reshape((x.shape[0], 1, img_width, img_width), ndim=4)
conv_out = conv.conv2d(
input=x,
filters=self.W_conv,
filter_shape=self.filter_shape,
image_shape=None,
border_mode=self.border_mode
)
pooled_out = pool.pool_2d(
input=conv_out,
ws=self.pool_size,
ignore_border=True
)
if self.disable_pooling:
pooled_out = conv_out
output = self._activation_func(pooled_out + self.B_conv.dimshuffle('x', 0, 'x', 'x'))
if self.flatten_output:
output = output.flatten(2)
return output
示例15: max_pool
# 需要導入模塊: from theano.tensor.signal import pool [as 別名]
# 或者: from theano.tensor.signal.pool import pool_2d [as 別名]
def max_pool( x, size, ignore_border=False ):
return pool_2d( x, size, ignore_border=ignore_border )