當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.round方法代碼示例

本文整理匯總了Python中theano.tensor.round方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.round方法的具體用法?Python tensor.round怎麽用?Python tensor.round使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.round方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_output

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def compute_output(self, network, in_vw):
        zero_ratio = network.find_hyperparameter(["zero_ratio"])
        axis = network.find_hyperparameter(["axis"], 1)

        in_var = in_vw.variable
        size = treeano.utils.as_fX(in_var.shape[axis])
        num_zeros = T.round(zero_ratio * size).astype("int32")
        idxs = [None] * (axis - 1) + [slice(-num_zeros, None)]
        out_var = T.set_subtensor(in_var[idxs], 0)

        network.create_vw(
            "default",
            variable=out_var,
            shape=in_vw.shape,
            tags={"output"},
        ) 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:18,代碼來源:resnet.py

示例2: get_output

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def get_output(self, train=False):
        p = self.get_input(train)
        if self.mode == 'maximum_likelihood':
            # draw maximum likelihood sample from Bernoulli distribution
            #    x* = argmax_x p(x) = 1         if p(x=1) >= 0.5
            #                         0         otherwise
            return T.round(p, mode='half_away_from_zero')
        elif self.mode == 'random':
            # draw random sample from Bernoulli distribution
            #    x* = x ~ p(x) = 1              if p(x=1) > uniform(0, 1)
            #                    0              otherwise
            return self.srng.binomial(size=p.shape, n=1, p=p, dtype=theano.config.floatX)
        elif self.mode == 'mean_field':
            # draw mean-field approximation sample from Bernoulli distribution
            #    x* = E[p(x)] = E[Bern(x; p)] = p
            return p
        else:
            raise NotImplementedError('Unknown sample mode!') 
開發者ID:wuaalb,項目名稱:keras_extensions,代碼行數:20,代碼來源:layers.py

示例3: create_oct_level_dense

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def create_oct_level_dense(self, unique_val, grid):

        uv_3d = T.cast(T.round(unique_val[0, :T.prod(self.regular_grid_res)].reshape(self.regular_grid_res, ndim=3)),
                       'int32')

        new_shape = T.concatenate([self.regular_grid_res, T.stack([3])])
        xyz = grid[:T.prod(self.regular_grid_res)].reshape(new_shape, ndim=4)

        shift_x = uv_3d[1:, :, :] - uv_3d[:-1, :, :]
        shift_x_select = T.neq(shift_x, 0)
        x_edg = (xyz[:-1, :, :][shift_x_select] + xyz[1:, :, :][shift_x_select])/2

        shift_y = uv_3d[:, 1:, :] - uv_3d[:, :-1, :]
        shift_y_select = T.neq(shift_y, 0)
        y_edg = (xyz[:, :-1, :][shift_y_select] + xyz[:, 1:, :][shift_y_select])/2

        shift_z = uv_3d[:, :, 1:] - uv_3d[:, :, :-1]
        shift_z_select = T.neq(shift_z, 0)
        z_edg = (xyz[:, :, :-1][shift_z_select] + xyz[:, :, 1:][shift_z_select])/2
        new_xyz_edg = T.vertical_stack(x_edg, y_edg, z_edg)

        return self.create_oct_voxels(new_xyz_edg) 
開發者ID:cgre-aachen,項目名稱:gempy,代碼行數:24,代碼來源:theano_graph_pro.py

示例4: create_oct_level_sparse

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def create_oct_level_sparse(self, unique_val, grid):
        xyz_8 = grid.reshape((-1, 8, 3))
#        uv_8 = T.round(unique_val[0, :-2 * self.len_points].reshape((-1, 8)))

        uv_8 = T.round(unique_val[0, :].reshape((-1, 8)))

        shift_x = uv_8[:, :4] - uv_8[:, 4:]
        shift_x_select = T.neq(shift_x, 0)
        x_edg = (xyz_8[:, :4, :][shift_x_select] + xyz_8[:, 4:, :][shift_x_select])/2

        shift_y = uv_8[:, [0,1,4,5]] - uv_8[:, [2,3,6,7]]
        shift_y_select = T.neq(shift_y, 0)
        y_edg = (xyz_8[:, [0, 1, 4, 5], :][shift_y_select] + xyz_8[:, [2, 3, 6, 7], :][shift_y_select])/2

        shift_z = uv_8[:, ::2] - uv_8[:, 1::2]
        shift_z_select = T.neq(shift_z, 0)
        z_edg = (xyz_8[:, ::2, :][shift_z_select] + xyz_8[:, 1::2, :][shift_z_select])/2

        new_xyz_edg = T.vertical_stack(x_edg, y_edg, z_edg)
        return self.create_oct_voxels(new_xyz_edg, level=2) 
開發者ID:cgre-aachen,項目名稱:gempy,代碼行數:22,代碼來源:theano_graph_pro.py

示例5: round

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def round(x):
    return T.round(x) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:4,代碼來源:theano_backend.py

示例6: get_pseudo_likelihood_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def get_pseudo_likelihood_cost(self, updates):
        bit_i_idx = theano.shared(value=0, name='bit_i_idx')
        xi = T.round(self.input)
        fe_xi = self.free_energy(xi)
        xi_flip = T.set_subtensor(xi[:, bit_i_idx], 1 - xi[:, bit_i_idx])
        fe_xi_flip = self.free_energy(xi_flip)
        cost = T.mean(self.n_visible * T.log(T.nnet.sigmoid(fe_xi_flip - fe_xi)))
        updates[bit_i_idx] = (bit_i_idx + 1) % self.n_visible
        return cost 
開發者ID:iamshang1,項目名稱:Projects,代碼行數:11,代碼來源:rbm_pretraining.py

示例7: round

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def round(x):
    return T.round(x, mode='half_to_even') 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:4,代碼來源:theano_backend.py

示例8: fixed_point

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def fixed_point(X,NOB, NOIB):
    
    power = T.cast(2.**(NOB - NOIB), theano.config.floatX) # float !
    max = T.cast((2.**NOB)-1, theano.config.floatX)
    value = X*power    
    value = T.round(value) # rounding
    value = T.clip(value, -max, max) # saturation arithmetic
    value = value/power
    return value
        
# compute the new range of the dynamic fixed point representation 
開發者ID:MatthieuCourbariaux,項目名稱:deep-learning-multipliers,代碼行數:13,代碼來源:format.py

示例9: binarize_conv_filters

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def binarize_conv_filters(W):
    """Binarize convolution weights and find the weight scaling factor
    W : theano tensor : convolution layer weight of dimension no_filters x no_feat_maps x h x w
    """
    # symbolic binary weight
    Wb = T.cast(T.switch(T.ge(W, 0),1,-1), theano.config.floatX)
    # BinaryNet method
    #Wb = T.cast(T.switch(T.round(hard_sigmoid(W),1,-1)), theano.config.floatX)

    # weight scaling factor
    # FIXME: directly compute the mean along axis 1,2,3 instead of reshaping    
    alpha = T.mean( T.reshape(T.abs_(W), (W.shape[0], W.shape[1]*W.shape[2]*W.shape[3])), axis=1)

    return Wb, alpha 
開發者ID:gplhegde,項目名稱:theano-xnor-net,代碼行數:16,代碼來源:xnor_net.py

示例10: binarize_fc_weights

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def binarize_fc_weights(W):
    # symbolic binary weight
    Wb = T.cast(T.switch(T.ge(W, 0),1,-1), theano.config.floatX)
    # BinaryNet method
    #Wb = T.cast(T.switch(T.round(hard_sigmoid(W)),1,-1), theano.config.floatX)

    alpha = T.mean(T.abs_(W), axis=0)
    return Wb, alpha 
開發者ID:gplhegde,項目名稱:theano-xnor-net,代碼行數:10,代碼來源:xnor_net.py

示例11: to_fixed_point_theano

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def to_fixed_point_theano(input, no_bits, no_int_bits):
    scale =T.cast(2.**(no_bits - no_int_bits), theano.config.floatX)
    max_val = T.cast((2.**no_bits) - 1, theano.config.floatX)
    scaled = input * scale
    scaled = T.round(scaled)
    scaled = T.clip(scaled, -max_val, max_val)
    return scaled/scale 
開發者ID:gplhegde,項目名稱:theano-xnor-net,代碼行數:9,代碼來源:fxp_helper.py

示例12: fixed_point

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def fixed_point(array, no_mag_bits, no_int_bits):
    """Convert to fixed point and convert it back to float
    """
    factor = 2.0 ** (no_mag_bits - no_int_bits)
    max_val = 2. ** no_mag_bits - 1
    scaled_arr = array * factor
    # round to the nearest value
    scaled_arr = np.around(scaled_arr)
    # saturation
    scaled_arr = np.clip(scaled_arr, -max_val, max_val)
    return scaled_arr/factor 
開發者ID:gplhegde,項目名稱:theano-xnor-net,代碼行數:13,代碼來源:fxp_helper.py

示例13: get_pseudo_likelihood_cost

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def get_pseudo_likelihood_cost(self, updates):
        """Stochastic approximation to the pseudo-likelihood"""

        # index of bit i in expression p(x_i | x_{\i})
        bit_i_idx = theano.shared(value=0, name='bit_i_idx')

        # binarize the input image by rounding to nearest integer
        xi = T.round(self.input)

        # calculate free energy for the given bit configuration
        fe_xi = self.free_energy(xi)

        # flip bit x_i of matrix xi and preserve all other bits x_{\i}
        # Equivalent to xi[:,bit_i_idx] = 1-xi[:, bit_i_idx], but assigns
        # the result to xi_flip, instead of working in place on xi.
        xi_flip = T.set_subtensor(xi[:, bit_i_idx], 1 - xi[:, bit_i_idx])

        # calculate free energy with bit flipped
        fe_xi_flip = self.free_energy(xi_flip)

        # equivalent to e^(-FE(x_i)) / (e^(-FE(x_i)) + e^(-FE(x_{\i})))
        cost = T.mean(self.n_visible * T.log(T.nnet.sigmoid(fe_xi_flip -
                                                            fe_xi)))

        # increment bit_i_idx % number as part of updates
        updates[bit_i_idx] = (bit_i_idx + 1) % self.n_visible

        return cost 
開發者ID:Bjoux2,項目名稱:DeepDTIs_DBN,代碼行數:30,代碼來源:rbm.py

示例14: get_boundary_voxels

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import round [as 別名]
def get_boundary_voxels(self, unique_val):
        uv_3d = T.cast(T.round(unique_val[0, :T.prod(self.regular_grid_res)].reshape(self.regular_grid_res, ndim=3)),
                       'int32')

        uv_l = T.horizontal_stack(uv_3d[1:, :, :].reshape((1, -1)),
                                  uv_3d[:, 1:, :].reshape((1, -1)),
                                  uv_3d[:, :, 1:].reshape((1, -1)))

        uv_r = T.horizontal_stack(uv_3d[:-1, :, :].reshape((1, -1)),
                                  uv_3d[:, :-1, :].reshape((1, -1)),
                                  uv_3d[:, :, :-1].reshape((1, -1)))

        shift = uv_l - uv_r
        select_edges = T.neq(shift.reshape((1, -1)), 0)
        select_edges_dir = select_edges.reshape((3, -1))

        select_voxels = T.zeros_like(uv_3d)
        select_voxels = T.inc_subtensor(select_voxels[1:, :, :],
                                        select_edges_dir[0].reshape((self.regular_grid_res - np.array([1, 0, 0])),
                                                                    ndim=3))
        select_voxels = T.inc_subtensor(select_voxels[:-1, :, :],
                                        select_edges_dir[0].reshape((self.regular_grid_res - np.array([1, 0, 0])),
                                                                    ndim=3))

        select_voxels = T.inc_subtensor(select_voxels[:, 1:, :],
                                        select_edges_dir[1].reshape((self.regular_grid_res - np.array([0, 1, 0])),
                                                                    ndim=3))
        select_voxels = T.inc_subtensor(select_voxels[:, :-1, :],
                                        select_edges_dir[1].reshape((self.regular_grid_res - np.array([0, 1, 0])),
                                                                    ndim=3))

        select_voxels = T.inc_subtensor(select_voxels[:, :, 1:],
                                        select_edges_dir[2].reshape((self.regular_grid_res - np.array([0, 0, 1])),
                                                                    ndim=3))
        select_voxels = T.inc_subtensor(select_voxels[:, :, :-1],
                                        select_edges_dir[2].reshape((self.regular_grid_res - np.array([0, 0, 1])),
                                                                    ndim=3))

        return select_voxels

    # region Geometry 
開發者ID:cgre-aachen,項目名稱:gempy,代碼行數:43,代碼來源:theano_graph_pro.py


注:本文中的theano.tensor.round方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。