當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.imatrix方法代碼示例

本文整理匯總了Python中theano.tensor.imatrix方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.imatrix方法的具體用法?Python tensor.imatrix怎麽用?Python tensor.imatrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.imatrix方法的14個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _make_rnn

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def _make_rnn(self, seq_length=4):
        self.embedding_dim = embedding_dim = 3
        self.vocab_size = vocab_size = 10
        self.seq_length = seq_length
        
        def compose_network(h_prev, inp, embedding_dim, model_dim, vs, name="compose"):
            # Just add the two embeddings!
            W = T.concatenate([T.eye(model_dim), T.eye(model_dim)], axis=0)
            i = T.concatenate([h_prev, inp], axis=1)
            return i.dot(W)

        X = T.imatrix("X")
        training_mode = T.scalar("training_mode")
        vs = VariableStore()
        embeddings = np.arange(vocab_size).reshape(
            (vocab_size, 1)).repeat(embedding_dim, axis=1)
        self.model = RNN(
            embedding_dim, embedding_dim, vocab_size, seq_length, compose_network,
            IdentityLayer, training_mode, None, vs,
            X=X, make_test_fn=True, initial_embeddings=embeddings) 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:22,代碼來源:test_plain_rnn.py

示例2: setUp

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def setUp(self):
        if 'gpu' not in theano.config.device:
            raise RuntimeError("Thin stack only defined for GPU usage")

        self.embedding_dim = self.model_dim = 2
        self.vocab_size = 5
        self.batch_size = 2
        self.num_classes = 2

        self.vs = VariableStore()
        self.compose_network = util.TreeLSTMLayer
        self.embedding_proj = IdentityLayer
        self.skip_embeddings = False

        self.X = T.imatrix("X")
        self.transitions = T.imatrix("transitions")
        self.y = T.ivector("y") 
開發者ID:stanfordnlp,項目名稱:spinn,代碼行數:19,代碼來源:test_stack.py

示例3: create

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def create(self):
        self._input_name = 'text'
        self._output_name = 'output'

        self.add_input(
                name=self._input_name, 
                input_shape=(self._config.max_input_time_steps, self._config.input_dim,))
        self.inputs['text'].input = T.imatrix()
        self.add_node(Embedding(
                self._config.input_dim, 
                self._config.textual_embedding_dim, 
                mask_zero=True), 
                name='embedding', input='text')
        self.add_node(
                self._config.recurrent_encoder(
                    self._config.hidden_state_dim, 
                    return_sequences=False,
                    go_backwards=self._config.go_backwards),
                name='recurrent', input='embedding') 
        self.add_node(Dropout(0.5), name='dropout', input='recurrent')
        self.add_node(Dense(self._config.output_dim), name='dense', input='dropout')
        self.add_node(Activation('softmax'), name='softmax', input='dense')
        self.add_output(name=self._output_name, input='softmax') 
開發者ID:mateuszmalinowski,項目名稱:visual_turing_test-tutorial,代碼行數:25,代碼來源:model_zoo.py

示例4: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def __init__(self, input_dim, proj_dim=128,
                 init='uniform', activation='sigmoid', weights=None):

        super(WordContextProduct, self).__init__()
        self.input_dim = input_dim
        self.proj_dim = proj_dim
        self.init = initializations.get(init)
        self.activation = activations.get(activation)

        self.input = T.imatrix()
        # two different embeddings for pivot word and its context
        # because p(w|c) != p(c|w)
        self.W_w = self.init((input_dim, proj_dim))
        self.W_c = self.init((input_dim, proj_dim))

        self.params = [self.W_w, self.W_c]

        if weights is not None:
            self.set_weights(weights) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:21,代碼來源:embeddings.py

示例5: add_input

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def add_input(self, name, ndim=2, dtype='float'):
        if name in self.namespace:
            raise Exception('Duplicate node identifier: ' + name)
        self.namespace.add(name)
        self.input_order.append(name)
        layer = Layer() # empty layer
        if dtype == 'float':
            layer.input = ndim_tensor(ndim)
        else:
            if ndim == 2:
                layer.input = T.imatrix()
            else:
                raise Exception('Type "int" can only be used with ndim==2.')
        layer.input.name = name
        self.inputs[name] = layer
        self.input_config.append({'name': name, 'ndim': ndim, 'dtype': dtype}) 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:18,代碼來源:containers.py

示例6: test_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def test_shape():
    input_var = T.tensor3('input')
    target_var = T.imatrix('target')
    output_var, _, _ = memory_augmented_neural_network(
        input_var, target_var,
        batch_size=16,
        nb_class=5,
        memory_shape=(128, 40),
        controller_size=200,
        input_size=20 * 20,
        nb_reads=4)

    posterior_fn = theano.function([input_var, target_var], output_var)

    test_input = np.random.rand(16, 50, 20 * 20)
    test_target = np.random.randint(5, size=(16, 50)).astype('int32')
    test_input_invalid_batch_size = np.random.rand(16 + 1, 50, 20 * 20)
    test_input_invalid_depth = np.random.rand(16, 50, 20 * 20 - 1)
    test_output = posterior_fn(test_input, test_target)

    assert test_output.shape == (16, 50, 5)
    with pytest.raises(ValueError) as e_info:
        posterior_fn(test_input_invalid_batch_size, test_target)
    with pytest.raises(ValueError) as e_info:
        posterior_fn(test_input_invalid_depth, test_target) 
開發者ID:tristandeleu,項目名稱:ntm-one-shot,代碼行數:27,代碼來源:test_model.py

示例7: test_sparseblockdot

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def test_sparseblockdot(self):
        """
        Compares the numpy version of sparseblockgemv to sparse_block_dot.
        """
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = sparse_block_dot(W, h, iIdx, b, oIdx)

        f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = \
            BlockSparse_Gemv_and_Outer.gemv_data()

        th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)

        ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)

        utt.assert_allclose(ref_out, th_out) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:25,代碼來源:test_blocksparse.py

示例8: test_sparseblockgemv

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def test_sparseblockgemv(self):
        """
        Compares the numpy and theano versions of sparseblockgemv.
        """
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)

        f = theano.function([W, h, iIdx, b, oIdx], o, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = \
            BlockSparse_Gemv_and_Outer.gemv_data()

        th_out = f(W_val, h_val, iIdx_val, b_val, oIdx_val)
        ref_out = BlockSparse_Gemv_and_Outer.gemv_numpy(
            b_val.take(oIdx_val, axis=0), W_val, h_val, iIdx_val, oIdx_val)

        utt.assert_allclose(ref_out, th_out) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:24,代碼來源:test_blocksparse.py

示例9: test_sparseblockgemv_grad_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def test_sparseblockgemv_grad_shape(self):
        b = tensor.fmatrix()
        W = tensor.ftensor4()
        h = tensor.ftensor3()
        iIdx = tensor.imatrix()
        oIdx = tensor.imatrix()

        o = self.gemv_op(b.take(oIdx, axis=0), W, h, iIdx, oIdx)
        go = theano.grad(o.sum(), [b, W, h])

        f = theano.function([W, h, iIdx, b, oIdx], go, mode=self.mode)

        W_val, h_val, iIdx_val, b_val, oIdx_val = \
            BlockSparse_Gemv_and_Outer.gemv_data()

        # just make sure that it runs correcly and all the shapes are ok.
        b_g, W_g, h_g = f(W_val, h_val, iIdx_val, b_val, oIdx_val)

        assert b_g.shape == b_val.shape
        assert h_g.shape == h_val.shape
        assert W_g.shape == W_val.shape 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:23,代碼來源:test_blocksparse.py

示例10: test_sparseblockouter

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def test_sparseblockouter(self):
        o = tensor.ftensor4()
        x = tensor.ftensor3()
        y = tensor.ftensor3()
        xIdx = tensor.imatrix()
        yIdx = tensor.imatrix()

        out = self.outer_op(o, x, y, xIdx, yIdx)

        f = theano.function([o, x, y, xIdx, yIdx], out,
                            on_unused_input="warn", mode=self.mode)

        o_val, x_val, y_val, xIdx_val, yIdx_val = \
            BlockSparse_Gemv_and_Outer.outer_data()

        th_out = f(o_val, x_val, y_val, xIdx_val, yIdx_val)
        ref_out = BlockSparse_Gemv_and_Outer.outer_numpy(
            o_val, x_val, y_val, xIdx_val, yIdx_val)

        utt.assert_allclose(ref_out, th_out) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_blocksparse.py

示例11: test

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def test():
    energies_var = T.tensor4('energies', dtype=theano.config.floatX)
    targets_var = T.imatrix('targets')
    masks_var = T.matrix('masks', dtype=theano.config.floatX)
    layer_input = lasagne.layers.InputLayer([2, 2, 3, 3], input_var=energies_var)
    out = lasagne.layers.get_output(layer_input)
    loss = crf_loss(out, targets_var, masks_var)
    prediction, acc = crf_accuracy(energies_var, targets_var)

    fn = theano.function([energies_var, targets_var, masks_var], [loss, prediction, acc])

    energies = np.array([[[[10, 15, 20], [5, 10, 15], [3, 2, 0]], [[5, 10, 1], [5, 10, 1], [5, 10, 1]]],
                         [[[5, 6, 7], [2, 3, 4], [2, 1, 0]], [[0, 0, 0], [0, 0, 0], [0, 0, 0]]]], dtype=np.float32)

    targets = np.array([[0, 1], [0, 2]], dtype=np.int32)

    masks = np.array([[1, 1], [1, 0]], dtype=np.float32)

    l, p, a = fn(energies, targets, masks)
    print l
    print p
    print a 
開發者ID:XuezheMax,項目名稱:LasagneNLP,代碼行數:24,代碼來源:bi_lstm_cnn_crf.py

示例12: __init__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def __init__(self, id, data, hp):
        self.type = 'LM'
        self.id = id
        self.filename = 'savedmodels\model_'+id+'.pkl'
        self.hp = hp

        self.X = T.imatrix()
        self.Y = T.ivector()
        self.seed_idx = T.iscalar()

        self.X.tag.test_value = np.random.randn(hp.seq_size, hp.batch_size).astype(dtype=np.int32)

        self.data = copy.copy(data)
        for key in ('tr_X', 'va_X', 'te_X', 'tr_Y', 'va_Y', 'te_Y'):
            if key in self.data:
                self.data['len_'+key] = len(self.data[key])
                self.data[key] = shared(self.data[key], borrow=True, dtype=np.int32)
        
        if hp['debug']:
            theano.config.optimizer = 'None'
            theano.config.compute_test_value = 'ignore'
            theano.config.exception_verbosity = 'high' 
開發者ID:Ivaylo-Popov,項目名稱:Theano-Lights,代碼行數:24,代碼來源:modelbase.py

示例13: build_network_from_ae

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def build_network_from_ae(classn, fea_len):
    input_var = T.tensor4('inputs');
    aug_var = T.matrix('aug_var');
    fea_var = T.matrix('fea_var');
    target_var = T.imatrix('targets');

    ae = pickle.load(open('model/conv_ae.pkl', 'rb'));

    input_layer_index = map(lambda pair : pair[0], ae.layers).index('input');
    first_layer = ae.get_all_layers()[input_layer_index + 1];
    input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var);
    first_layer.input_layer = input_layer;

    encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer');
    encode_layer = ae.get_all_layers()[encode_layer_index];
    aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var);
    fea_layer = layers.InputLayer(shape=(None, fea_len), input_var = fea_var);

    cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer, fea_layer], axis = 1);
    hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify);

    network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid);

    return network, encode_layer, input_var, aug_var, fea_var, target_var; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:26,代碼來源:conv_sup_cc_lbp.py

示例14: build_network_from_ae

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import imatrix [as 別名]
def build_network_from_ae(classn):
    input_var = T.tensor4('inputs');
    aug_var = T.matrix('aug_var');
    target_var = T.imatrix('targets');

    ae = pickle.load(open('model/conv_ae.pkl', 'rb'));

    input_layer_index = map(lambda pair : pair[0], ae.layers).index('input');
    first_layer = ae.get_all_layers()[input_layer_index + 1];
    input_layer = layers.InputLayer(shape=(None, 3, 32, 32), input_var = input_var);
    first_layer.input_layer = input_layer;

    encode_layer_index = map(lambda pair : pair[0], ae.layers).index('encode_layer');
    encode_layer = ae.get_all_layers()[encode_layer_index];
    aug_layer = layers.InputLayer(shape=(None, classn), input_var = aug_var);

    cat_layer = lasagne.layers.ConcatLayer([encode_layer, aug_layer], axis = 1);
    hidden_layer = layers.DenseLayer(incoming = cat_layer, num_units = 100, nonlinearity = rectify);

    network = layers.DenseLayer(incoming = hidden_layer, num_units = classn, nonlinearity = sigmoid);

    return network, encode_layer, input_var, aug_var, target_var; 
開發者ID:SBU-BMI,項目名稱:u24_lymphocyte,代碼行數:24,代碼來源:conv_sup_cc.py


注:本文中的theano.tensor.imatrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。