當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.ge方法代碼示例

本文整理匯總了Python中theano.tensor.ge方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.ge方法的具體用法?Python tensor.ge怎麽用?Python tensor.ge使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.ge方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_elemwise_comparaison_cast

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def test_elemwise_comparaison_cast():
    """
    test if an elemwise comparaison followed by a cast to float32 are
    pushed to gpu.
    """

    a = tensor.fmatrix()
    b = tensor.fmatrix()
    av = theano._asarray(numpy.random.rand(4, 4), dtype='float32')
    bv = numpy.ones((4, 4), dtype='float32')

    for g, ans in [(tensor.lt, av < bv), (tensor.gt, av > bv),
                   (tensor.le, av <= bv), (tensor.ge, av >= bv)]:

        f = pfunc([a, b], tensor.cast(g(a, b), 'float32'), mode=mode_with_gpu)

        out = f(av, bv)
        assert numpy.all(out == ans)
        assert any([isinstance(node.op, cuda.GpuElemwise)
                    for node in f.maker.fgraph.toposort()]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_basic_ops.py

示例2: errors4one

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def errors4one(self, z, out, weight=None, distLabelType='12C'):
	distBins = config.distCutoffs[distLabelType]
	label8 = DistanceUtils.LabelsOfOneDistance(config.ContactDefinition, distBins)
	label15 = DistanceUtils.LabelsOfOneDistance(config.InteractionLimit, distBins)

	z3C = T.cast( T.ge(z, label8), 'int32') + T.cast( T.ge(z, label15), 'int32')
	o3C = T.cast( T.ge(out, label8), 'int32') + T.cast( T.ge(out, label15), 'int32')

	if weight is not None:
            err = T.sum( T.mul(weight, T.neq(o3C, z3C) ) )*1./T.sum(weight)
	else:
            err = T.mean( T.neq(o3C , z3C) ) 

	## err is s scalar, convert it to a tensor with ndim=1
	return T.stack([err] )

    ## this function returns a vector of errors, the size of this vector is equal to the sum of ValueDims for all the responses 
開發者ID:j3xugit,項目名稱:RaptorX-Contact,代碼行數:19,代碼來源:Model4DistancePrediction.py

示例3: SGD

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def SGD(tparams, cost, inps, lr,clip_norm=5):
    """ default: lr=0.01 """
    
    grads = tensor.grad(cost, tparams.values())
    norm = tensor.sqrt(sum([tensor.sum(g**2) for g in grads]))
    if tensor.ge(norm, clip_norm):
        grads = [g*clip_norm/norm for g in grads]
        
    gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) 
                for k, p in tparams.iteritems()]
    gsup = [(gs, g) for gs, g in zip(gshared, grads)]
    f_grad_shared = theano.function(inps, cost, updates=gsup)
    
    updates = []

    for p, g in zip(tparams.values(), gshared):       
        updated_p = p - lr * g
        updates.append((p, updated_p))
    
    f_update = theano.function([lr], [], updates=updates)
    
    return f_grad_shared, f_update 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:24,代碼來源:optimizers.py

示例4: Adagrad

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def Adagrad(tparams, cost, inps, lr, epsilon=1e-6,clip_norm=5):
    """ default: lr=0.01 """
    
    grads = tensor.grad(cost, tparams.values())
    norm = tensor.sqrt(sum([tensor.sum(g**2) for g in grads]))
    if tensor.ge(norm, clip_norm):
        grads = [g*clip_norm/norm for g in grads]
        
    gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) 
                for k, p in tparams.iteritems()]
    gsup = [(gs, g) for gs, g in zip(gshared, grads)]
    f_grad_shared = theano.function(inps, cost, updates=gsup)    
    
    updates = []
    
    for p, g in zip(tparams.values(), gshared):
        acc = theano.shared(p.get_value() * 0.)
        acc_t = acc + g ** 2
        updates.append((acc, acc_t))
        p_t = p - (lr / tensor.sqrt(acc_t + epsilon)) * g
        updates.append((p, p_t))
    
    f_update = theano.function([lr], [], updates=updates)
    
    return f_grad_shared, f_update 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:27,代碼來源:optimizers.py

示例5: apply

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def apply(self, y, y_hat):
        # Support checkpoints that predate self.top_k
        top_k = getattr(self, 'top_k', 1)
        if top_k == 1:
            mistakes = tensor.neq(y, y_hat.argmax(axis=1))
        else:
            row_offsets = theano.tensor.arange(0, y_hat.flatten().shape[0],
                                               y_hat.shape[1])
            truth_score = y_hat.flatten()[row_offsets + y]
            # We use greater than _or equals_ here so that the model
            # _must_ have its guess in the top k, and cannot extend
            # its effective "list of predictions" by tying lots of things
            # for k-th place.
            higher_scoring = tensor.ge(y_hat, truth_score.dimshuffle(0, 'x'))
            # Because we used greater-than-or-equal we have to correct for
            # counting the true label.
            num_higher = higher_scoring.sum(axis=1) - 1
            mistakes = tensor.ge(num_higher, top_k)
        return mistakes.mean(dtype=theano.config.floatX) 
開發者ID:rizar,項目名稱:attention-lvcsr,代碼行數:21,代碼來源:cost.py

示例6: get_gradients

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def get_gradients(self, model, data, **kwargs):
        gradients, updates = self.cost.get_gradients(model, data, **kwargs)

        norm = tensor.sqrt(tensor.sum(
            [tensor.sum(param_gradient ** 2) for param, param_gradient
             in six.iteritems(gradients)
             if param.name not in self.exclude_params]
        ))

        clipped_gradients = OrderedDict()
        for param, param_gradient in six.iteritems(gradients):
            if param.name not in self.exclude_params:
                clipped_gradients[param] = tensor.switch(
                    tensor.ge(norm, self.clipping_value),
                    param_gradient / norm * self.clipping_value,
                    param_gradient
                )
        gradients.update(clipped_gradients)
        return gradients, updates 
開發者ID:zchengquan,項目名稱:TextDetector,代碼行數:21,代碼來源:gradient_clipping.py

示例7: flux

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def flux(self, xo, yo, zo, ro, u):
        """Compute the light curve."""
        # Initialize flat light curve
        flux = tt.ones_like(xo)

        # Compute the occultation mask
        b = tt.sqrt(xo ** 2 + yo ** 2)
        b_occ = tt.invert(tt.ge(b, 1.0 + ro) | tt.le(zo, 0.0) | tt.eq(ro, 0.0))
        i_occ = tt.arange(b.size)[b_occ]

        # Get the Agol `c` coefficients
        c = self._get_cl(u)
        if self.udeg == 0:
            c_norm = c / (np.pi * c[0])
        else:
            c_norm = c / (np.pi * (c[0] + 2 * c[1] / 3))

        # Compute the occultation flux
        los = zo[i_occ]
        r = ro * tt.ones_like(los)
        flux = tt.set_subtensor(
            flux[i_occ], self._limbdark(c_norm, b[i_occ], r, los)[0]
        )
        return flux 
開發者ID:rodluger,項目名稱:starry,代碼行數:26,代碼來源:core.py

示例8: greater_equal

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def greater_equal(x, y):
    return T.ge(x, y) 
開發者ID:lingluodlut,項目名稱:Att-ChemdNER,代碼行數:4,代碼來源:theano_backend.py

示例9: error

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def error(self, y, threshold=0.5):
        return tensor.mean(tensor.eq(tensor.ge(self.prediction(), threshold), y)) 
開發者ID:chrischoy,項目名稱:3D-R2N2,代碼行數:4,代碼來源:layers.py

示例10: __call__

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def __call__(self, p):
        p *= T.ge(p, 0)
        return p 
開發者ID:lllcho,項目名稱:CAPTCHA-breaking,代碼行數:5,代碼來源:constraints.py

示例11: Momentum

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def Momentum(tparams, cost, inps, lr, momentum=0.9,clip_norm=5):
    """ default: lr=0.01 """
    
    grads = tensor.grad(cost, tparams.values())
    norm = tensor.sqrt(sum([tensor.sum(g**2) for g in grads]))
    if tensor.ge(norm, clip_norm):
        grads = [g*clip_norm/norm for g in grads]
        
    gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) 
                for k, p in tparams.iteritems()]
    gsup = [(gs, g) for gs, g in zip(gshared, grads)]
    f_grad_shared = theano.function(inps, cost, updates=gsup) 
    
    updates = []

    for p, g in zip(tparams.values(), gshared): 
        m = theano.shared(p.get_value() * 0.)
        m_new = momentum * m - lr * g
        updates.append((m, m_new))        
        
        updated_p = p + m_new
        updates.append((p, updated_p))
    
    f_update = theano.function([lr], [], updates=updates)
    
    return f_grad_shared, f_update 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:28,代碼來源:optimizers.py

示例12: NAG

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def NAG(tparams, cost, inps, lr, momentum=0.9,clip_norm=5):
    """ default: lr=0.01 """
    
    grads = tensor.grad(cost, tparams.values())
    norm = tensor.sqrt(sum([tensor.sum(g**2) for g in grads]))
    if tensor.ge(norm, clip_norm):
        grads = [g*clip_norm/norm for g in grads]
        
    gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) 
                for k, p in tparams.iteritems()]
    gsup = [(gs, g) for gs, g in zip(gshared, grads)]
    f_grad_shared = theano.function(inps, cost, updates=gsup) 
    
    updates = []

    for p, g in zip(tparams.values(), gshared):
        m = theano.shared(p.get_value() * 0.)
        m_new = momentum * m - lr * g
        updates.append((m, m_new))        
        
        updated_p = p + momentum * m_new - lr * g
        updates.append((p, updated_p))
    
    f_update = theano.function([lr], [], updates=updates)
    
    return f_grad_shared, f_update 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:28,代碼來源:optimizers.py

示例13: Adadelta

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def Adadelta(tparams, cost, inps, lr, rho=0.95, epsilon=1e-6,clip_norm=5):
    """ default: lr=0.5 """
    
    grads = tensor.grad(cost, tparams.values())
    norm = tensor.sqrt(sum([tensor.sum(g**2) for g in grads]))
    if tensor.ge(norm, clip_norm):
        grads = [g*clip_norm/norm for g in grads]
        
    gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) 
                for k, p in tparams.iteritems()]
    gsup = [(gs, g) for gs, g in zip(gshared, grads)]
    f_grad_shared = theano.function(inps, cost, updates=gsup)
    
    updates = []

    for p, g in zip(tparams.values(), gshared):
        acc = theano.shared(p.get_value() * 0.)
        acc_delta = theano.shared(p.get_value() * 0.)
        acc_new = rho * acc + (1 - rho) * g ** 2
        updates.append((acc,acc_new)) 
        
        update = g * tensor.sqrt(acc_delta + epsilon) / tensor.sqrt(acc_new + epsilon)
        updated_p = p - lr * update
        updates.append((p, updated_p))
        
        acc_delta_new = rho * acc_delta + (1 - rho) * update ** 2
        updates.append((acc_delta,acc_delta_new))
    
    f_update = theano.function([lr], [], updates=updates)
    
    return f_grad_shared, f_update 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:33,代碼來源:optimizers.py

示例14: RMSprop_v2

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def RMSprop_v2(tparams, cost, inps, lr, rho=0.95, momentum=0.9, epsilon=1e-4, clip_norm=5):
    """ default: lr=0.0001 
        This is the implementation of the RMSprop algorithm used in
        http://arxiv.org/pdf/1308.0850v5.pdf
    """
    
    grads = tensor.grad(cost, tparams.values())
    norm = tensor.sqrt(sum([tensor.sum(g**2) for g in grads]))
    if tensor.ge(norm, clip_norm):
        grads = [g*clip_norm/norm for g in grads]
        
    gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) 
                for k, p in tparams.iteritems()]
    gsup = [(gs, g) for gs, g in zip(gshared, grads)]
    f_grad_shared = theano.function(inps, cost, updates=gsup)    
    
    updates = []

    for p, g in zip(tparams.values(), gshared):
        acc = theano.shared(p.get_value() * 0.)
        acc2 = theano.shared(p.get_value() * 0.)
        acc_new = rho * acc + (1.-rho) * g
        acc2_new = rho * acc + (1.-rho) * (g ** 2)
        updates.append((acc, acc_new))
        updates.append((acc2, acc2_new))
        
        updir = theano.shared(p.get_value() * 0.)
        updir_new = momentum * updir - lr * g / tensor.sqrt(acc2_new -acc_new ** 2 + epsilon)
        updates.append((updir, updir_new))
        
        updated_p = p + updir_new
        updates.append((p, updated_p))
    
    f_update = theano.function([lr], [], updates=updates)
    
    return f_grad_shared, f_update 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:38,代碼來源:optimizers.py

示例15: Adam

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import ge [as 別名]
def Adam(tparams, cost, inps, lr, b1=0.1, b2=0.001, e=1e-8, clip_norm=5):
    """ default: lr=0.0002 
        This is the implementation of the Adam algorithm
        Reference: http://arxiv.org/pdf/1412.6980v8.pdf
    """
    
    grads = tensor.grad(cost, tparams.values())
    norm = tensor.sqrt(sum([tensor.sum(g**2) for g in grads]))
    if tensor.ge(norm, clip_norm):
        grads = [g*clip_norm/norm for g in grads]
    
    gshared = [theano.shared(p.get_value() * 0., name='%s_grad'%k) 
                for k, p in tparams.iteritems()]
    gsup = [(gs, g) for gs, g in zip(gshared, grads)]
    f_grad_shared = theano.function(inps, cost, updates=gsup)
    
    updates = []

    i = theano.shared(numpy_floatX(0.))    
    i_t = i + 1.
    fix1 = 1. - b1**(i_t)
    fix2 = 1. - b2**(i_t)
    lr_t = lr * (tensor.sqrt(fix2) / fix1)

    for p, g in zip(tparams.values(), gshared):
        m = theano.shared(p.get_value() * 0.)
        v = theano.shared(p.get_value() * 0.)
        m_t = (b1 * g) + ((1. - b1) * m)
        v_t = (b2 * tensor.sqr(g)) + ((1. - b2) * v)
        g_t = m_t / (tensor.sqrt(v_t) + e)
        p_t = p - (lr_t * g_t)
        updates.append((m, m_t))
        updates.append((v, v_t))
        updates.append((p, p_t))
    updates.append((i, i_t))
    
    f_update = theano.function([lr], [], updates=updates)
    
    return f_grad_shared, f_update 
開發者ID:zhegan27,項目名稱:sentence_classification,代碼行數:41,代碼來源:optimizers.py


注:本文中的theano.tensor.ge方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。