當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor.constant方法代碼示例

本文整理匯總了Python中theano.tensor.constant方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor.constant方法的具體用法?Python tensor.constant怎麽用?Python tensor.constant使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在theano.tensor的用法示例。


在下文中一共展示了tensor.constant方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: print_graph_linker

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def print_graph_linker(print_prog=True):
    if 1:
        imap = {None:'-'}
        def blah(i, node, thunk):
            imap[node] = str(i)
            if print_prog:# and node.op.__class__ is T.DimShuffle:
                if False and  node.op == T.DimShuffle((), ['x', 'x'], inplace = True):
                    print(node.op == T.DimShuffle((), ['x', 'x'],
                                                  inplace=True), end=' ')
                    print(node.inputs[0], type(node.inputs[0]), end=' ')
                    print(node.inputs[0].equals(T.constant(2)), end=' ')
                outputs = node.outputs
                inputs = theano.gof.graph.inputs(outputs)
                print('node ', i, node, end=' ')
                print(':'.join([imap[inp.owner] for inp in node.inputs]))
                #print theano.sandbox.pprint.pp.process_graph(inputs, outputs)
        return theano.sandbox.wraplinker.WrapLinkerMany(
                [theano.gof.OpWiseCLinker()],
                [theano.sandbox.wraplinker.run_all
                    ,blah
                    #,theano.sandbox.wraplinker.numpy_notall_isfinite
                    ])
    else:
        return theano.gof.OpWiseCLinker() 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:26,代碼來源:aa.py

示例2: test_csm_unsorted

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def test_csm_unsorted(self):
        """
        Test support for gradients of unsorted inputs.
        """
        sp_types = {'csc': sp.csc_matrix,
                    'csr': sp.csr_matrix}

        for format in ['csr', 'csc', ]:
            for dtype in ['float32', 'float64']:
                x = tensor.tensor(dtype=dtype, broadcastable=(False,))
                y = tensor.ivector()
                z = tensor.ivector()
                s = tensor.ivector()
                # Sparse advanced indexing produces unsorted sparse matrices
                a = sparse_random_inputs(format, (4, 3), out_dtype=dtype,
                                         unsorted_indices=True)[1][0]
                # Make sure it's unsorted
                assert not a.has_sorted_indices
                def my_op(x):
                    y = tensor.constant(a.indices)
                    z = tensor.constant(a.indptr)
                    s = tensor.constant(a.shape)
                    return tensor.sum(
                        dense_from_sparse(CSM(format)(x, y, z, s) * a))
                verify_grad_sparse(my_op, [a.data]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:27,代碼來源:test_basic.py

示例3: get_size

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def get_size(self, shape_info):
        # The size is the data, that have constant size.
        state = numpy.random.RandomState().get_state()
        size = 0
        for elem in state:
            if isinstance(elem, str):
                size += len(elem)
            elif isinstance(elem, numpy.ndarray):
                size += elem.size * elem.itemsize
            elif isinstance(elem, int):
                size += numpy.dtype("int").itemsize
            elif isinstance(elem, float):
                size += numpy.dtype("float").itemsize
            else:
                raise NotImplementedError()
        return size 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:raw_random.py

示例4: infer_shape

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def infer_shape(self, node, i_shapes):
        r, shp = node.inputs[0:2]

        # if shp is a constant array of len 0, then it means 'automatic shape'
        unknown_shape = len(getattr(shp, 'data', [0, 1, 2])) == 0

        # if ndim_added == 0 and shape != () then shape
        if self.ndim_added == 0 and not unknown_shape:
            sample_shp = shp
        else:
            # if shape == () then it will depend on args
            # if ndim_added != 0 and shape != () then it will depend on args
            # Use the default infer_shape implementation.
            raise tensor.ShapeError()

        return [None, [sample_shp[i] for i in xrange(node.outputs[1].ndim)]] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:raw_random.py

示例5: test_constant

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def test_constant(self):
        orig_compute_test_value = theano.config.compute_test_value
        try:
            theano.config.compute_test_value = 'raise'

            x = T.constant(numpy.random.rand(2, 3), dtype=config.floatX)
            y = theano.shared(numpy.random.rand(3, 6).astype(config.floatX),
                              'y')

            # should work
            z = T.dot(x, y)
            assert hasattr(z.tag, 'test_value')
            f = theano.function([], z)
            assert _allclose(f(), z.tag.test_value)

            # this test should fail
            x = T.constant(numpy.random.rand(2, 4), dtype=config.floatX)
            self.assertRaises(ValueError, T.dot, x, y)
        finally:
            theano.config.compute_test_value = orig_compute_test_value 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:22,代碼來源:test_compute_test_value.py

示例6: test_gpualloc

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def test_gpualloc():
    '''
    This tests tries to catch the scenario when, due to infer_shape,
    the input of the alloc changes from tensor scalar to a constant
    1. In this case the original constracted broadcastable pattern will
    have a False for that dimension, but the new broadcastable pattern
    that will be inserted by gpualloc will have  a True since it knows the
    dimension is 1 and therefore broadcastable.
    '''

    x = theano.shared(numpy.ones(3, dtype='float32'), 'x')
    m = (x).dimshuffle(['x', 0])
    v = tensor.alloc(1., *m.shape)
    f = theano.function([], v + x,
                        mode=mode_with_gpu.excluding("local_elemwise_alloc"))
    l = f.maker.fgraph.toposort()
    assert numpy.any([isinstance(x.op, cuda.GpuAlloc) for x in l]) 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:19,代碼來源:test_opt.py

示例7: make_node

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def make_node(self, x, index):
        assert isinstance(x.type, TypedListType)
        if not isinstance(index, Variable):
            if isinstance(index, slice):
                index = Constant(SliceType(), index)
                return Apply(self, [x, index], [x.type()])
            else:
                index = T.constant(index, ndim=0, dtype='int64')
                return Apply(self, [x, index], [x.ttype()])
        if isinstance(index.type, SliceType):
            return Apply(self, [x, index], [x.type()])
        elif isinstance(index, T.TensorVariable) and index.ndim == 0:
            assert index.dtype == 'int64'
            return Apply(self, [x, index], [x.ttype()])
        else:
            raise TypeError('Expected scalar or slice as index.') 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:18,代碼來源:basic.py

示例8: get_output_for

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def get_output_for(self, input, deterministic=False, **kwargs):
        """
        Parameters
        ----------
        input : tensor
            output from the previous layer
        deterministic : bool
            If true dropout and scaling is disabled, see notes
        """
        if deterministic or self.p == 0:
            return input
        else:
            # Using theano constant to prevent upcasting
            one = T.constant(1)

            retain_prob = one - self.p
            if self.rescale:
                input /= retain_prob

            mask = _srng.binomial(input.shape[:2], p=retain_prob,
                                      dtype=theano.config.floatX)
            axes = [0, 1] + (['x'] * (input.ndim - 2))
            mask = mask.dimshuffle(*axes)

            return input * mask 
開發者ID:gzuidhof,項目名稱:luna16,代碼行數:27,代碼來源:custom_layers.py

示例9: stop_gradient

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def stop_gradient(variables):
    """Returns `variables` but with zero gradient w.r.t. every other variable.

    # Arguments
        variables: tensor or list of tensors to consider constant with respect
            to any other variable.

    # Returns
        A single tensor or a list of tensors (depending on the passed argument)
            that has constant gradient with respect to any other variable.
    """
    if isinstance(variables, (list, tuple)):
        return map(theano.gradient.disconnected_grad, variables)
    else:
        return theano.gradient.disconnected_grad(variables)


# CONTROL FLOW 
開發者ID:Relph1119,項目名稱:GraphicDesignPatternByPython,代碼行數:20,代碼來源:theano_backend.py

示例10: test_mixin_sklearn_params

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def test_mixin_sklearn_params():
    # get_params
    p = Normal(mu=0.0, sigma=1.0)
    params = p.get_params()
    assert len(params) == 2
    assert "mu" in params
    assert "sigma" in params

    # for parameters, set_params should change the value contained
    old_mu = p.get_params()["mu"]
    p.set_params(mu=42.0)
    new_mu = p.get_params()["mu"]
    assert old_mu is new_mu
    assert new_mu.get_value() == 42.0

    # check errors
    p = Normal(mu=T.constant(0.0), sigma=1.0)
    assert_raises(ValueError, p.set_params, mu=1.0) 
開發者ID:diana-hep,項目名稱:carl,代碼行數:20,代碼來源:test_base.py

示例11: test_fit

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def test_fit():
    p1 = Normal(mu=T.constant(0.0), sigma=T.constant(2.0))
    p2 = Normal(mu=T.constant(3.0), sigma=T.constant(2.0))
    p3 = Exponential(inverse_scale=T.constant(0.5))
    g = theano.shared(0.5)
    m = Mixture(components=[p1, p2, p3], weights=[g, g*g])

    X = np.concatenate([st.norm(loc=0.0, scale=2.0).rvs(300, random_state=0),
                        st.norm(loc=3.0, scale=2.0).rvs(100, random_state=1),
                        st.expon(scale=1. / 0.5).rvs(500, random_state=2)])
    X = X.reshape(-1, 1)
    s0 = m.score(X)

    m.fit(X)
    assert np.abs(g.eval() - 1. / 3.) < 0.05
    assert m.score(X) >= s0 
開發者ID:diana-hep,項目名稱:carl,代碼行數:18,代碼來源:test_mixture.py

示例12: huber_loss

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def huber_loss(mx, Sx, target, Q, width=1.0, *args, **kwargs):
    '''
        Huber loss
    '''
    if Sx is None:
        # deterministic case
        if mx.ndim == 1:
            mx = mx[None, :]
        delta = mx-target
        Q = tt.constant(Q) if isinstance(Q, np.ndarray) else Q
        deltaQ = delta.dot(Q)
        abs_deltaQ = abs(deltaQ)
        cost = tt.switch(
            abs_deltaQ <= width,
            0.5*deltaQ**2,
            width*(abs_deltaQ - width/2)).sum(-1)
        return cost
    else:
        # stochastic case (moment matching)
        raise NotImplementedError 
開發者ID:mcgillmrl,項目名稱:kusanagi,代碼行數:22,代碼來源:cost.py

示例13: sample_noise

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def sample_noise(self, input):
        # get noise_shape
        noise_shape = self.input_shape
        if any(s is None for s in noise_shape):
            noise_shape = input.shape

        # respect shared axes
        if self.shared_axes:
            shared_axes = tuple(a if a >= 0 else a + input.ndim
                                for a in self.shared_axes)
            noise_shape = tuple(1 if a in shared_axes else s
                                for a, s in enumerate(noise_shape))

        one = tt.constant(1)
        retain_prob = one - self.p
        noise = self._srng.binomial(noise_shape, p=retain_prob,
                                    dtype=floatX)

        if self.shared_axes:
            bcast = tuple(bool(s == 1) for s in noise_shape)
            noise = tt.patternbroadcast(noise, bcast)

        return noise 
開發者ID:mcgillmrl,項目名稱:kusanagi,代碼行數:25,代碼來源:layers.py

示例14: upsample_bilinear

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def upsample_bilinear(x, scale):
    '''
    Bilinearly upsamples x:
    (nimgs, nfeat, h, w) -> (nimgs, nfeat, h*scale, w*scale)
    '''
    kx = np.linspace(0, 1, scale + 1)[1:-1]
    kx = np.concatenate((kx, [1], kx[::-1]))
    ker = kx[xx,:] * kx[:, xx]
    ker = T.constant(ker[xx,xx,:,:].astype(np.float32))
    xbatch = x.reshape((x.shape[0] * x.shape[1], 1, x.shape[2], x.shape[3]))
    xup = conv(xbatch, ker, 'valid', transpose=True, stride=scale)
    return xup.reshape((x.shape[0], x.shape[1], xup.shape[2], xup.shape[3])) 
開發者ID:hjimce,項目名稱:Depth-Map-Prediction,代碼行數:14,代碼來源:net.py

示例15: setUp

# 需要導入模塊: from theano import tensor [as 別名]
# 或者: from theano.tensor import constant [as 別名]
def setUp(self):
        super(AddSSDataTester, self).setUp()
        self.op_class = AddSSData

        for format in sparse.sparse_formats:
            variable = getattr(theano.sparse, format + '_matrix')

            rand = numpy.array(
                numpy.random.random_integers(3, size=(3, 4)) - 1,
                dtype=theano.config.floatX)
            constant = as_sparse_format(rand, format)

            self.x[format] = [variable() for t in range(2)]
            self.a[format] = [constant for t in range(2)] 
開發者ID:muhanzhang,項目名稱:D-VAE,代碼行數:16,代碼來源:test_basic.py


注:本文中的theano.tensor.constant方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。