本文整理匯總了Python中theano.config.floatX方法的典型用法代碼示例。如果您正苦於以下問題:Python config.floatX方法的具體用法?Python config.floatX怎麽用?Python config.floatX使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類theano.config
的用法示例。
在下文中一共展示了config.floatX方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: make_node
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def make_node(self, x, ilist):
x_ = as_cuda_ndarray_variable(x)
ilist_ = gpu_contiguous(T.cast(ilist, dtype=config.floatX)) # T.as_tensor_variable(ilist)
#if ilist_.type.dtype[:3] not in ('int', 'uin'):
# raise TypeError('index must be integers')
if ilist_.type.ndim != 1:
raise TypeError('index must be vector')
if x_.type.ndim == 0:
raise TypeError('cannot index into a scalar')
# # c code suppose it is int64
# if x.ndim in [1, 2, 3] and ilist_.dtype in [
# 'int8', 'int16', 'int32', 'uint8', 'uint16', 'uint32']:
# ilist_ = tensor.cast(ilist_, 'int64')
bcast = (ilist_.broadcastable[0],) + x_.broadcastable[1:]
return theano.gof.Apply(self, [x_, ilist_],
[CudaNdarrayType(dtype=x.dtype,
broadcastable=bcast)()])
示例2: grad
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def grad(self, inputs, grads):
g_output, = grads
x, y, idx_list = inputs
if x.dtype in theano.tensor.discrete_dtypes:
# The output dtype is the same as x
gx = x.zeros_like(dtype=theano.config.floatX)
if y.dtype in theano.tensor.discrete_dtypes:
gy = y.zeros_like(dtype=theano.config.floatX)
else:
gy = y.zeros_like()
elif x.dtype in theano.tensor.complex_dtypes:
raise NotImplementedError("No support for complex grad yet")
else:
if self.set_instead_of_inc:
gx_op = AdvancedIncSubtensor1Floats(set_instead_of_inc=True,
inplace=self.inplace)
gx = gx_op(g_output, y.zeros_like(), idx_list)
else:
gx = g_output
gy = AdvancedSubtensor1Floats()(g_output, idx_list)
gy = T.subtensor._sum_grad_over_bcasted_dims(y, gy)
return [gx, gy] + [T.DisconnectedType()()]
示例3: __call__
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def __call__(self, algorithm):
"""
Adjusts the learning rate according to the linear decay schedule
Parameters
----------
algorithm : WRITEME
"""
if self._count == 0:
self._base_lr = algorithm.learning_rate.get_value()
self._step = ((self._base_lr - self._base_lr * self.decay_factor) /
(self.saturate - self.start + 1))
self._count += 1
if self._count >= self.start:
if self._count < self.saturate:
new_lr = self._base_lr - self._step * (self._count
- self.start + 1)
else:
new_lr = self._base_lr * self.decay_factor
else:
new_lr = self._base_lr
assert new_lr > 0
new_lr = np.cast[config.floatX](new_lr)
algorithm.learning_rate.set_value(new_lr)
示例4: on_monitor
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def on_monitor(self, model, dataset, algorithm):
"""
Adjusts the learning rate according to the decay schedule.
Parameters
----------
model : a Model instance
dataset : Dataset
algorithm : WRITEME
"""
if not self._initialized:
self._init_lr = algorithm.learning_rate.get_value()
if self._init_lr < self.min_lr:
raise ValueError("The initial learning rate is smaller than " +
"the minimum allowed learning rate.")
self._initialized = True
self._count += 1
algorithm.learning_rate.set_value(np.cast[config.floatX](
self.current_lr()))
示例5: test_local_csm_properties_csm
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def test_local_csm_properties_csm():
data = tensor.vector()
indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
tensor.ivector())
mode = theano.compile.mode.get_default_mode()
mode = mode.including("specialize", "local_csm_properties_csm")
for CS, cast in [(sparse.CSC, sp.csc_matrix),
(sparse.CSR, sp.csr_matrix)]:
f = theano.function([data, indices, indptr, shape],
sparse.csm_properties(
CS(data, indices, indptr, shape)),
mode=mode)
assert not any(
isinstance(node.op, (sparse.CSM, sparse.CSMProperties))
for node in f.maker.fgraph.toposort())
v = cast(random_lil((10, 40),
config.floatX, 3))
f(v.data, v.indices, v.indptr, v.shape)
示例6: test_local_csm_grad_c
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def test_local_csm_grad_c():
raise SkipTest("Opt disabled as it don't support unsorted indices")
if not theano.config.cxx:
raise SkipTest("G++ not available, so we need to skip this test.")
data = tensor.vector()
indices, indptr, shape = (tensor.ivector(), tensor.ivector(),
tensor.ivector())
mode = theano.compile.mode.get_default_mode()
if theano.config.mode == 'FAST_COMPILE':
mode = theano.compile.Mode(linker='c|py', optimizer='fast_compile')
mode = mode.including("specialize", "local_csm_grad_c")
for CS, cast in [(sparse.CSC, sp.csc_matrix), (sparse.CSR, sp.csr_matrix)]:
cost = tensor.sum(sparse.DenseFromSparse()(CS(data, indices, indptr, shape)))
f = theano.function(
[data, indices, indptr, shape],
tensor.grad(cost, data),
mode=mode)
assert not any(isinstance(node.op, sparse.CSMGrad) for node
in f.maker.fgraph.toposort())
v = cast(random_lil((10, 40),
config.floatX, 3))
f(v.data, v.indices, v.indptr, v.shape)
示例7: __generalized_ss_test
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def __generalized_ss_test(self, theanop, symbolicType, testOp, scipyType):
scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]]
if (bool(scipy_ver < [0, 13])):
raise SkipTest("comparison operators need newer release of scipy")
x = symbolicType()
y = symbolicType()
op = theanop(x, y)
f = theano.function([x, y], op)
m1 = scipyType(random_lil((10, 40), config.floatX, 3))
m2 = scipyType(random_lil((10, 40), config.floatX, 3))
self.assertTrue(numpy.array_equal(f(m1, m2).data, testOp(m1, m2).data))
示例8: __generalized_ds_test
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def __generalized_ds_test(self, theanop, symbolicType, testOp, scipyType):
scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]]
if (bool(scipy_ver < [0, 13])):
raise SkipTest("comparison operators need newer release of scipy")
x = symbolicType()
y = theano.tensor.matrix()
op = theanop(y, x)
f = theano.function([y, x], op)
m1 = scipyType(random_lil((10, 40), config.floatX, 3))
m2 = self._rand_ranged(1000, -1000, [10, 40])
self.assertTrue(numpy.array_equal(f(m2, m1).data, testOp(m2, m1).data))
示例9: test_equality_case
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def test_equality_case(self):
"""
Test assuring normal behaviour when values
in the matrices are equal
"""
scipy_ver = [int(n) for n in scipy.__version__.split('.')[:2]]
if (bool(scipy_ver < [0, 13])):
raise SkipTest("comparison operators need newer release of scipy")
x = sparse.csc_matrix()
y = theano.tensor.matrix()
m1 = sp.csc_matrix((2, 2), dtype=theano.config.floatX)
m2 = numpy.asarray([[0, 0], [0, 0]], dtype=theano.config.floatX)
for func in self.testsDic:
op = func(y, x)
f = theano.function([y, x], op)
self.assertTrue(numpy.array_equal(f(m2, m1),
self.testsDic[func](m2, m1)))
示例10: setUp
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def setUp(self):
super(DotTests, self).setUp()
x_size = (10, 100)
y_size = (100, 1000)
utt.seed_rng()
self.x_csr = scipy.sparse.csr_matrix(
numpy.random.binomial(1, 0.5, x_size), dtype=theano.config.floatX)
self.x_csc = scipy.sparse.csc_matrix(
numpy.random.binomial(1, 0.5, x_size), dtype=theano.config.floatX)
self.y = numpy.asarray(numpy.random.uniform(-1, 1, y_size),
dtype=theano.config.floatX)
self.y_csr = scipy.sparse.csr_matrix(
numpy.random.binomial(1, 0.5, y_size), dtype=theano.config.floatX)
self.y_csc = scipy.sparse.csc_matrix(
numpy.random.binomial(1, 0.5, y_size), dtype=theano.config.floatX)
self.v_10 = numpy.asarray(numpy.random.uniform(-1, 1, 10),
dtype=theano.config.floatX)
self.v_100 = numpy.asarray(numpy.random.uniform(-1, 1, 100),
dtype=theano.config.floatX)
示例11: test_size
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def test_size():
"""
Ensure the `size` attribute of sparse matrices behaves as in numpy.
"""
for sparse_type in ('csc_matrix', 'csr_matrix'):
x = getattr(theano.sparse, sparse_type)()
y = getattr(scipy.sparse, sparse_type)((5, 7)).astype(config.floatX)
get_size = theano.function([x], x.size)
def check():
assert y.size == get_size(y)
# We verify that the size is correctly updated as we store more data
# into the sparse matrix (including zeros).
check()
y[0, 0] = 1
check()
y[0, 1] = 0
check()
示例12: grad
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def grad(self, inputs, outputs_gradients):
gz = outputs_gradients[0]
if gz.dtype in complex_dtypes:
raise NotImplementedError("grad not implemented for complex types")
if inputs[0].dtype in complex_dtypes:
raise NotImplementedError("grad not implemented for complex types")
if gz.dtype in discrete_dtypes:
if inputs[0].dtype in discrete_dtypes:
return [inputs[0].zeros_like(dtype=theano.config.floatX)]
else:
return [inputs[0].zeros_like()]
else:
if inputs[0].dtype in discrete_dtypes:
return [gz]
else:
return [Cast(inputs[0].dtype)(gz)]
示例13: test_broadcast
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def test_broadcast(self):
# test that we don't raise an error during optimization for no good
# reason as softmax_with_bias don't support correctly some/all
# broadcasted inputs pattern
initial_W = numpy.asarray([[0.1, 0.1, 0.1],
[0.1, 0.1, 0.1],
[0.1, 0.1, 0.1]],
dtype=theano.config.floatX)
W = theano.shared(value=initial_W, name='W')
vbias = theano.shared(value=0.1, name='vbias') # 0.01
hid = T.vector('hid')
f = theano.function([hid],
T.nnet.softmax_op(T.dot(hid, W.T) + vbias))
ops = [node.op for node in f.maker.fgraph.toposort()]
assert softmax_with_bias not in ops
assert softmax_op in ops
f([0, 1, 0])
# print f.maker.fgraph.toposort()
示例14: test_local_softmax_grad_optimization_and_big_input
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def test_local_softmax_grad_optimization_and_big_input(self):
"""Test the Logsoftmax's grad substitution.
Check that Log(Softmax(x))'s grad is substituted with Logsoftmax(x)'s
grad and that the new operation does not explode for big inputs.
Note that only the grad is checked.
"""
m = theano.config.mode
m = theano.compile.get_mode(m)
m.check_isfinite = False
# some inputs that are large to make the gradient explode in the non
# optimized case
a = numpy.exp(10 * numpy.random.rand(5, 10).astype(theano.config.floatX))
def myfunc(x):
sm = tensor.nnet.softmax(x)
logsm = tensor.log(sm)
return logsm
# We set step to 0.1 because for big values we need a big epsilon
utt.verify_grad(myfunc, [a], eps=0.1, mode=m)
f = theano.function([], myfunc(a))
self.assertTrue(hasattr(f.maker.fgraph.outputs[0].tag, 'trace'))
示例15: test_basic
# 需要導入模塊: from theano import config [as 別名]
# 或者: from theano.config import floatX [as 別名]
def test_basic(self):
c = T.matrix()
p_y = T.exp(c) / T.exp(c).sum(axis=1).dimshuffle(0, 'x')
# test that function contains softmax and no div.
f = theano.function([c], p_y, mode=self.mode)
assert hasattr(f.maker.fgraph.outputs[0].tag, 'trace')
f_ops = [n.op for n in f.maker.fgraph.toposort()]
# print '--- f ='
# printing.debugprint(f)
# print '==='
assert len(f_ops) == 1
assert softmax_op in f_ops
f(self.rng.rand(3, 4).astype(config.floatX))