本文整理匯總了Python中tensorflow.python.ops.gen_math_ops._max方法的典型用法代碼示例。如果您正苦於以下問題:Python gen_math_ops._max方法的具體用法?Python gen_math_ops._max怎麽用?Python gen_math_ops._max使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.ops.gen_math_ops
的用法示例。
在下文中一共展示了gen_math_ops._max方法的6個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: reduce_max
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _max [as 別名]
def reduce_max(input_tensor, reduction_indices=None, keep_dims=False,
name=None):
"""Computes the maximum of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `reduction_indices`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `reduction_indices`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `reduction_indices` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
reduction_indices: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
Returns:
The reduced tensor.
"""
return gen_math_ops._max(input_tensor, _ReductionDims(input_tensor,
reduction_indices),
keep_dims, name=name)
示例2: reduce_max
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _max [as 別名]
def reduce_max(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the maximum of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.max
@end_compatibility
"""
return gen_math_ops._max(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
示例3: reduce_max
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _max [as 別名]
def reduce_max(input_tensor,
axis=None,
keep_dims=False,
name=None,
reduction_indices=None):
"""Computes the maximum of elements across dimensions of a tensor.
Reduces `input_tensor` along the dimensions given in `axis`.
Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each
entry in `axis`. If `keep_dims` is true, the reduced dimensions
are retained with length 1.
If `axis` has no entries, all dimensions are reduced, and a
tensor with a single element is returned.
Args:
input_tensor: The tensor to reduce. Should have numeric type.
axis: The dimensions to reduce. If `None` (the default),
reduces all dimensions. Must be in the range
`[-rank(input_tensor), rank(input_tensor))`.
keep_dims: If true, retains reduced dimensions with length 1.
name: A name for the operation (optional).
reduction_indices: The old (deprecated) name for axis.
Returns:
The reduced tensor.
@compatibility(numpy)
Equivalent to np.max
@end_compatibility
"""
return gen_math_ops._max(
input_tensor,
_ReductionDims(input_tensor, axis, reduction_indices),
keep_dims,
name=name)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:38,代碼來源:math_ops.py
示例4: sequence_mask
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _max [as 別名]
def sequence_mask(lengths, maxlen=None, dtype=dtypes.bool, name=None):
"""Return a mask tensor representing the first N positions of each row.
Example:
```python
tf.sequence_mask([1, 3, 2], 5) =
[[True, False, False, False, False],
[True, True, True, False, False],
[True, True, False, False, False]]
```
Args:
lengths: 1D integer tensor, all its values < maxlen.
maxlen: scalar integer tensor, maximum length of each row. Default: use
maximum over lengths.
dtype: output type of the resulting tensor.
name: name of the op.
Returns:
A 2D mask tensor, as shown in the example above, cast to specified dtype.
Raises:
ValueError: if the arguments have invalid rank.
"""
with ops.name_scope(name, "SequenceMask", [lengths, maxlen]):
lengths = ops.convert_to_tensor(lengths)
if lengths.get_shape().ndims != 1:
raise ValueError("lengths must be 1D for sequence_mask")
if maxlen is None:
maxlen = gen_math_ops._max(lengths, [0])
else:
maxlen = ops.convert_to_tensor(maxlen)
if maxlen.get_shape().ndims != 0:
raise ValueError("maxlen must be scalar for sequence_mask")
# The basic idea is to compare a range row vector of size maxlen:
# [0, 1, 2, 3, 4]
# to length as a matrix with 1 column: [[1], [3], [2]].
# Because of broadcasting on both arguments this comparison results
# in a matrix of size (len(lengths), maxlen)
row_vector = gen_math_ops._range(constant(0, maxlen.dtype),
maxlen,
constant(1, maxlen.dtype))
# Since maxlen >= max(lengths), it is safe to use maxlen as a cast
# authoritative type. Whenever maxlen fits into tf.int32, so do the lengths.
matrix = gen_math_ops.cast(expand_dims(lengths, 1), maxlen.dtype)
result = row_vector < matrix
if dtype is None or result.dtype.base_dtype == dtype.base_dtype:
return result
else:
return gen_math_ops.cast(result, dtype)
示例5: sequence_mask
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _max [as 別名]
def sequence_mask(lengths, maxlen=None, dtype=dtypes.bool, name=None):
"""Return a mask tensor representing the first N positions of each row.
Example:
```python
tf.sequence_mask([1, 3, 2], 5) =
[[True, False, False, False, False],
[True, True, True, False, False],
[True, True, False, False, False]]
```
Args:
lengths: 1D integer tensor, all its values < maxlen.
maxlen: scalar integer tensor, maximum length of each row. Default: use
maximum over lengths.
dtype: output type of the resulting tensor.
name: name of the op.
Returns:
A 2D mask tensor, as shown in the example above, cast to specified dtype.
Raises:
ValueError: if the arguments have invalid rank.
"""
with ops.name_scope(name, "SequenceMask", [lengths, maxlen]):
lengths = ops.convert_to_tensor(lengths)
if lengths.get_shape().ndims != 1:
raise ValueError("lengths must be 1D for sequence_mask")
if maxlen is None:
maxlen = gen_math_ops._max(lengths, [0])
else:
maxlen = ops.convert_to_tensor(maxlen)
if maxlen.get_shape().ndims != 0:
raise ValueError("maxlen must be scalar for sequence_mask")
# The basic idea is to compare a range row vector of size maxlen:
# [0, 1, 2, 3, 4]
# to length as a matrix with 1 column: [[1], [3], [2]].
# Because of broadcasting on both arguments this comparison results
# in a matrix of size (len(lengths), maxlen)
result = gen_math_ops._range(0, maxlen, 1) < expand_dims(lengths, 1)
if dtype is None or result.dtype.base_dtype == dtype.base_dtype:
return result
else:
return gen_math_ops.cast(result, dtype)
示例6: sequence_mask
# 需要導入模塊: from tensorflow.python.ops import gen_math_ops [as 別名]
# 或者: from tensorflow.python.ops.gen_math_ops import _max [as 別名]
def sequence_mask(lengths, maxlen=None, dtype=dtypes.bool, name=None):
"""Returns a mask tensor representing the first N positions of each cell.
If `lengths` has shape `[d_1, d_2, ..., d_n]` the resulting tensor `mask` has
dtype `dtype` and shape `[d_1, d_2, ..., d_n, maxlen]`, with
```
mask[i_1, i_2, ..., i_n, j] = (j < lengths[i_1, i_2, ..., i_n])
```
Examples:
```python
tf.sequence_mask([1, 3, 2], 5) # [[True, False, False, False, False],
# [True, True, True, False, False],
# [True, True, False, False, False]]
tf.sequence_mask([[1, 3],[2,0]]) # [[[True, False, False],
# [True, True, True]],
# [[True, True, False],
# [False, False, False]]]
```
Args:
lengths: integer tensor, all its values <= maxlen.
maxlen: scalar integer tensor, size of last dimension of returned tensor.
Default is the maximum value in `lengths`.
dtype: output type of the resulting tensor.
name: name of the op.
Returns:
A mask tensor of shape `lengths.shape + (maxlen,)`, cast to specified dtype.
Raises:
ValueError: if `maxlen` is not a scalar.
"""
with ops.name_scope(name, "SequenceMask", [lengths, maxlen]):
lengths = ops.convert_to_tensor(lengths)
if maxlen is None:
maxlen = gen_math_ops._max(lengths, _all_dimensions(lengths))
else:
maxlen = ops.convert_to_tensor(maxlen)
if maxlen.get_shape().ndims != 0:
raise ValueError("maxlen must be scalar for sequence_mask")
# The basic idea is to compare a range row vector of size maxlen:
# [0, 1, 2, 3, 4]
# to length as a matrix with 1 column: [[1], [3], [2]].
# Because of broadcasting on both arguments this comparison results
# in a matrix of size (len(lengths), maxlen)
row_vector = gen_math_ops._range(
constant(0, maxlen.dtype), maxlen, constant(1, maxlen.dtype))
# Since maxlen >= max(lengths), it is safe to use maxlen as a cast
# authoritative type. Whenever maxlen fits into tf.int32, so do the lengths.
matrix = gen_math_ops.cast(expand_dims(lengths, -1), maxlen.dtype)
result = row_vector < matrix
if dtype is None or result.dtype.base_dtype == dtype.base_dtype:
return result
else:
return gen_math_ops.cast(result, dtype)
開發者ID:PacktPublishing,項目名稱:Serverless-Deep-Learning-with-TensorFlow-and-AWS-Lambda,代碼行數:62,代碼來源:array_ops.py