本文整理匯總了Python中tensorflow.python.framework.tensor_shape.matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.matrix方法的具體用法?Python tensor_shape.matrix怎麽用?Python tensor_shape.matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類tensorflow.python.framework.tensor_shape
的用法示例。
在下文中一共展示了tensor_shape.matrix方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: output_shapes
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def output_shapes(self):
num_elements = tensor_shape.Dimension(None)
return (tensor_shape.matrix(num_elements, self._row_shape.shape[0] + 1),
tensor_shape.vector(num_elements),
tensor_shape.vector(self._row_shape.shape[0] + 1))
示例2: _to_legacy_output_shapes
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def _to_legacy_output_shapes(self):
# Sneak the dynamic_size and infer_shape values into the legacy shape.
return (tensor_shape.matrix(self._dynamic_size, self._infer_shape)
.concatenate(self._element_shape))
示例3: _reverse_seq
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def _reverse_seq(input_seq, lengths):
"""Reverse a list of Tensors up to specified lengths.
Args:
input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
lengths: A tensor of dimension batch_size, containing lengths for each
sequence in the batch. If "None" is specified, simply reverses
the list.
Returns:
time-reversed sequence
"""
if lengths is None:
return list(reversed(input_seq))
input_shape = tensor_shape.matrix(None, None)
for input_ in input_seq:
input_shape.merge_with(input_.get_shape())
input_.set_shape(input_shape)
# Join into (time, batch_size, depth)
s_joined = array_ops.pack(input_seq)
# TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
if lengths is not None:
lengths = math_ops.to_int64(lengths)
# Reverse along dimension 0
s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
# Split again into list
result = array_ops.unpack(s_reversed)
for r in result:
r.set_shape(input_shape)
return result
示例4: testHelpers
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def testHelpers(self):
tensor_shape.TensorShape([]).assert_is_compatible_with(
tensor_shape.scalar())
tensor_shape.TensorShape([37]).assert_is_compatible_with(
tensor_shape.vector(37))
tensor_shape.TensorShape(
[94, 43]).assert_is_compatible_with(tensor_shape.matrix(94, 43))
示例5: testStr
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def testStr(self):
self.assertEqual("<unknown>", str(tensor_shape.unknown_shape()))
self.assertEqual("(?,)", str(tensor_shape.unknown_shape(ndims=1)))
self.assertEqual("(?, ?)", str(tensor_shape.unknown_shape(ndims=2)))
self.assertEqual("(?, ?, ?)", str(tensor_shape.unknown_shape(ndims=3)))
self.assertEqual("()", str(tensor_shape.scalar()))
self.assertEqual("(7,)", str(tensor_shape.vector(7)))
self.assertEqual("(3, 8)", str(tensor_shape.matrix(3, 8)))
self.assertEqual("(4, 5, 2)", str(tensor_shape.TensorShape([4, 5, 2])))
self.assertEqual("(32, ?, 1, 9)",
str(tensor_shape.TensorShape([32, None, 1, 9])))
示例6: _reverse_seq
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def _reverse_seq(input_seq, lengths):
"""Reverse a list of Tensors up to specified lengths.
Args:
input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
lengths: A tensor of dimension batch_size, containing lengths for each
sequence in the batch. If "None" is specified, simply reverses
the list.
Returns:
time-reversed sequence
"""
if lengths is None:
return list(reversed(input_seq))
input_shape = tensor_shape.matrix(None, None)
for input_ in input_seq:
input_shape.merge_with(input_.get_shape())
input_.set_shape(input_shape)
# Join into (time, batch_size, depth)
s_joined = tf.stack(input_seq)
if lengths is not None:
lengths = tf.to_int64(lengths)
# Reverse along dimension 0
s_reversed = tf.reverse_sequence(s_joined, lengths, 0, 1)
# Split again into list
result = tf.unstack(s_reversed)
for r in result:
r.set_shape(input_shape)
return result
示例7: linear
# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def linear(args, output_size, bias, bias_start=0.0, scope=None):
"""Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.
Args:
args: a 2D Tensor or a list of 2D, batch x n, Tensors.
output_size: int, second dimension of W[i].
bias: boolean, whether to add a bias term or not.
bias_start: starting value to initialize the bias; 0 by default.
scope: VariableScope for the created subgraph; defaults to "Linear".
Returns:
A 2D Tensor with shape [batch x output_size] equal to
sum_i(args[i] * W[i]), where W[i]s are newly created matrices.
Raises:
ValueError: if some of the arguments has unspecified or wrong shape.
"""
if args is None or (isinstance(args, (list, tuple)) and not args):
raise ValueError('`args` must be specified')
if not isinstance(args, (list, tuple)):
args = [args]
# Calculate the total size of arguments on dimension 1.
total_arg_size = 0
shapes = [a.get_shape().as_list() for a in args]
for shape in shapes:
if len(shape) != 2:
raise ValueError('Linear is expecting 2D arguments: %s' % str(shapes))
if not shape[1]:
raise ValueError('Linear expects shape[1] of arguments: %s' % str(shapes))
else:
total_arg_size += shape[1]
# Now the computation.
with tf.variable_scope(scope or 'Linear'):
matrix = tf.get_variable('Matrix', [total_arg_size, output_size])
if len(args) == 1:
res = tf.matmul(args[0], matrix)
else:
res = tf.matmul(tf.concat(args, 1), matrix)
if not bias:
return res
bias_term = tf.get_variable(
'Bias', [output_size],
initializer=tf.constant_initializer(bias_start))
return res + bias_term