當前位置: 首頁>>代碼示例>>Python>>正文


Python tensor_shape.matrix方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.tensor_shape.matrix方法的典型用法代碼示例。如果您正苦於以下問題:Python tensor_shape.matrix方法的具體用法?Python tensor_shape.matrix怎麽用?Python tensor_shape.matrix使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.tensor_shape的用法示例。


在下文中一共展示了tensor_shape.matrix方法的7個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: output_shapes

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def output_shapes(self):
    num_elements = tensor_shape.Dimension(None)
    return (tensor_shape.matrix(num_elements, self._row_shape.shape[0] + 1),
            tensor_shape.vector(num_elements),
            tensor_shape.vector(self._row_shape.shape[0] + 1)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:7,代碼來源:dataset_ops.py

示例2: _to_legacy_output_shapes

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def _to_legacy_output_shapes(self):
    # Sneak the dynamic_size and infer_shape values into the legacy shape.
    return (tensor_shape.matrix(self._dynamic_size, self._infer_shape)
            .concatenate(self._element_shape)) 
開發者ID:yyht,項目名稱:BERT,代碼行數:6,代碼來源:strcuture.py

示例3: _reverse_seq

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def _reverse_seq(input_seq, lengths):
  """Reverse a list of Tensors up to specified lengths.
  Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
    lengths:   A tensor of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply reverses
               the list.
  Returns:
    time-reversed sequence
  """
  if lengths is None:
    return list(reversed(input_seq))

  input_shape = tensor_shape.matrix(None, None)
  for input_ in input_seq:
    input_shape.merge_with(input_.get_shape())
    input_.set_shape(input_shape)

  # Join into (time, batch_size, depth)
  s_joined = array_ops.pack(input_seq)

  # TODO(schuster, ebrevdo): Remove cast when reverse_sequence takes int32
  if lengths is not None:
    lengths = math_ops.to_int64(lengths)

  # Reverse along dimension 0
  s_reversed = array_ops.reverse_sequence(s_joined, lengths, 0, 1)
  # Split again into list
  result = array_ops.unpack(s_reversed)
  for r in result:
    r.set_shape(input_shape)
  return result 
開發者ID:uwnlp,項目名稱:qrn,代碼行數:34,代碼來源:rnn.py

示例4: testHelpers

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def testHelpers(self):
    tensor_shape.TensorShape([]).assert_is_compatible_with(
        tensor_shape.scalar())
    tensor_shape.TensorShape([37]).assert_is_compatible_with(
        tensor_shape.vector(37))
    tensor_shape.TensorShape(
        [94, 43]).assert_is_compatible_with(tensor_shape.matrix(94, 43)) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:9,代碼來源:tensor_shape_test.py

示例5: testStr

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def testStr(self):
    self.assertEqual("<unknown>", str(tensor_shape.unknown_shape()))
    self.assertEqual("(?,)", str(tensor_shape.unknown_shape(ndims=1)))
    self.assertEqual("(?, ?)", str(tensor_shape.unknown_shape(ndims=2)))
    self.assertEqual("(?, ?, ?)", str(tensor_shape.unknown_shape(ndims=3)))

    self.assertEqual("()", str(tensor_shape.scalar()))
    self.assertEqual("(7,)", str(tensor_shape.vector(7)))
    self.assertEqual("(3, 8)", str(tensor_shape.matrix(3, 8)))
    self.assertEqual("(4, 5, 2)", str(tensor_shape.TensorShape([4, 5, 2])))

    self.assertEqual("(32, ?, 1, 9)",
                     str(tensor_shape.TensorShape([32, None, 1, 9]))) 
開發者ID:tobegit3hub,項目名稱:deep_image_model,代碼行數:15,代碼來源:tensor_shape_test.py

示例6: _reverse_seq

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def _reverse_seq(input_seq, lengths):
  """Reverse a list of Tensors up to specified lengths.

  Args:
    input_seq: Sequence of seq_len tensors of dimension (batch_size, depth)
    lengths:   A tensor of dimension batch_size, containing lengths for each
               sequence in the batch. If "None" is specified, simply reverses
               the list.

  Returns:
    time-reversed sequence
  """
  if lengths is None:
    return list(reversed(input_seq))

  input_shape = tensor_shape.matrix(None, None)
  for input_ in input_seq:
    input_shape.merge_with(input_.get_shape())
    input_.set_shape(input_shape)

  # Join into (time, batch_size, depth)
  s_joined = tf.stack(input_seq)

  if lengths is not None:
    lengths = tf.to_int64(lengths)

  # Reverse along dimension 0
  s_reversed = tf.reverse_sequence(s_joined, lengths, 0, 1)
  # Split again into list
  result = tf.unstack(s_reversed)
  for r in result:
    r.set_shape(input_shape)
  return result 
開發者ID:google,項目名稱:text2text,代碼行數:35,代碼來源:library.py

示例7: linear

# 需要導入模塊: from tensorflow.python.framework import tensor_shape [as 別名]
# 或者: from tensorflow.python.framework.tensor_shape import matrix [as 別名]
def linear(args, output_size, bias, bias_start=0.0, scope=None):
  """Linear map: sum_i(args[i] * W[i]), where W[i] is a variable.

  Args:
    args: a 2D Tensor or a list of 2D, batch x n, Tensors.
    output_size: int, second dimension of W[i].
    bias: boolean, whether to add a bias term or not.
    bias_start: starting value to initialize the bias; 0 by default.
    scope: VariableScope for the created subgraph; defaults to "Linear".

  Returns:
    A 2D Tensor with shape [batch x output_size] equal to
    sum_i(args[i] * W[i]), where W[i]s are newly created matrices.

  Raises:
    ValueError: if some of the arguments has unspecified or wrong shape.
  """
  if args is None or (isinstance(args, (list, tuple)) and not args):
    raise ValueError('`args` must be specified')
  if not isinstance(args, (list, tuple)):
    args = [args]

  # Calculate the total size of arguments on dimension 1.
  total_arg_size = 0
  shapes = [a.get_shape().as_list() for a in args]
  for shape in shapes:
    if len(shape) != 2:
      raise ValueError('Linear is expecting 2D arguments: %s' % str(shapes))
    if not shape[1]:
      raise ValueError('Linear expects shape[1] of arguments: %s' % str(shapes))
    else:
      total_arg_size += shape[1]

  # Now the computation.
  with tf.variable_scope(scope or 'Linear'):
    matrix = tf.get_variable('Matrix', [total_arg_size, output_size])
    if len(args) == 1:
      res = tf.matmul(args[0], matrix)
    else:
      res = tf.matmul(tf.concat(args, 1), matrix)
    if not bias:
      return res
    bias_term = tf.get_variable(
        'Bias', [output_size],
        initializer=tf.constant_initializer(bias_start))
  return res + bias_term 
開發者ID:google,項目名稱:text2text,代碼行數:48,代碼來源:library.py


注:本文中的tensorflow.python.framework.tensor_shape.matrix方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。