當前位置: 首頁>>代碼示例>>Python>>正文


Python dtypes.as_dtype方法代碼示例

本文整理匯總了Python中tensorflow.python.framework.dtypes.as_dtype方法的典型用法代碼示例。如果您正苦於以下問題:Python dtypes.as_dtype方法的具體用法?Python dtypes.as_dtype怎麽用?Python dtypes.as_dtype使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在tensorflow.python.framework.dtypes的用法示例。


在下文中一共展示了dtypes.as_dtype方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: _restore_slice

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def _restore_slice(file_pattern, tensor_name, shape_and_slice, tensor_type,
                   name="restore_slice", preferred_shard=-1):
  """Restore a tensor slice from a set of files with a given pattern.

  Example usage:
    RestoreSlice("/foo/bar-?????-of-?????", "w", "10 10 0,2:-", DT_FLOAT)

  Args:
    file_pattern: the file pattern used to match a set of checkpoint files.
    tensor_name: the name of the tensor to restore.
    shape_and_slice: the shape-and-slice spec of the slice.
    tensor_type: the type of the tensor to restore.
    name: string.  Optional name for the op.
    preferred_shard: Int. Optional shard to open first in the checkpoint file.

  Returns:
    A tensor of type "tensor_type".
  """
  base_type = dtypes.as_dtype(tensor_type).base_dtype
  return gen_io_ops._restore_slice(
      file_pattern, tensor_name, shape_and_slice, base_type,
      preferred_shard, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:24,代碼來源:io_ops.py

示例2: __init__

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def __init__(self, scale=1.0,
               mode="fan_in",
               distribution="normal",
               seed=None,
               dtype=dtypes.float32):
    if scale <= 0.:
      raise ValueError("`scale` must be positive float.")
    if mode not in {"fan_in", "fan_out", "fan_avg"}:
      raise ValueError("Invalid `mode` argument:", mode)
    distribution = distribution.lower()
    if distribution not in {"normal", "uniform"}:
      raise ValueError("Invalid `distribution` argument:", distribution)
    self.scale = scale
    self.mode = mode
    self.distribution = distribution
    self.seed = seed
    self.dtype = _assert_float_dtype(dtypes.as_dtype(dtype)) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:19,代碼來源:init_ops.py

示例3: __init__

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def __init__(self, op, value_index, dtype):
    """Creates a new `Tensor`.

    Args:
      op: An `Operation`. `Operation` that computes this tensor.
      value_index: An `int`. Index of the operation's endpoint that produces
        this tensor.
      dtype: A `DType`. Type of elements stored in this tensor.

    Raises:
      TypeError: If the op is not an `Operation`.
    """
    if not isinstance(op, Operation):
      raise TypeError("op needs to be an Operation: %s" % op)
    self._op = op
    self._value_index = value_index
    self._dtype = dtypes.as_dtype(dtype)
    self._shape = tensor_shape.unknown_shape()
    # List of operations that use this Tensor as input.  We maintain this list
    # to easily navigate a computation graph.
    self._consumers = []

    # Attributes used for C++ shape inference. Not inspected, only forwarded.
    self._handle_shape = tensor_shape_pb2.TensorShapeProto()
    self._handle_dtype = types_pb2.DT_INVALID 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:27,代碼來源:ops.py

示例4: random_positive_definite_matrix

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def random_positive_definite_matrix(shape, dtype, force_well_conditioned=False):
  """[batch] positive definite matrix.

  Args:
    shape:  `TensorShape` or Python list.  Shape of the returned matrix.
    dtype:  `TensorFlow` `dtype` or Python dtype.
    force_well_conditioned:  Python bool.  If `True`, returned matrix has
      eigenvalues with modulus in `(1, 4)`.  Otherwise, eigenvalues are
      chi-squared random variables.

  Returns:
    `Tensor` with desired shape and dtype.
  """
  dtype = dtypes.as_dtype(dtype)
  if not contrib_tensor_util.is_tensor(shape):
    shape = tensor_shape.TensorShape(shape)
    # Matrix must be square.
    shape[-1].assert_is_compatible_with(shape[-2])

  with ops.name_scope("random_positive_definite_matrix"):
    tril = random_tril_matrix(
        shape, dtype, force_well_conditioned=force_well_conditioned)
    return math_ops.matmul(tril, tril, adjoint_b=True) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:25,代碼來源:linear_operator_test_util.py

示例5: _VerifyGeneratedGradients

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def _VerifyGeneratedGradients(grads, op):
  """Verify that gradients are valid in number and type.

  Args:
    grads: List of generated gradients.
    op: Operation for which the gradients where generated.

  Raises:
    ValueError: if the gradients are invalid.
  """
  if len(grads) != len(op.inputs):
    raise ValueError("Num gradients %d generated for op %s do not match num "
                     "inputs %d" % (len(grads), op.node_def, len(op.inputs)))
  for i in xrange(len(grads)):
    grad = grads[i]
    inp = op.inputs[i]
    if grad is not None:
      if not grad.dtype.is_compatible_with(inp.dtype):
        raise ValueError("Gradient type %s generated for op %s does "
                         "not match input type %s" %
                         (dtypes.as_dtype(grad.dtype).name, op.node_def,
                          dtypes.as_dtype(inp.dtype).name)) 
開發者ID:abhisuri97,項目名稱:auto-alt-text-lambda-api,代碼行數:24,代碼來源:gradients_impl.py

示例6: _prepare_output_as_AppendArrayToTensorProto

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def _prepare_output_as_AppendArrayToTensorProto(
        inference_output,
        model_available_outputs):
    response = predict_pb2.PredictResponse()
    for response_output_name, model_output_name in \
            model_available_outputs.items():
        if model_output_name in inference_output:
            dtype = dtypes.as_dtype(inference_output[model_output_name].dtype)
            output_tensor = tensor_pb2.TensorProto(
                dtype=dtype.as_datatype_enum,
                tensor_shape=tensor_shape.as_shape(
                    inference_output[model_output_name].shape).as_proto())
            result = inference_output[model_output_name].flatten()
            tensor_util._NP_TO_APPEND_FN[dtype.as_numpy_dtype](output_tensor,
                                                               result)
            response.outputs[response_output_name].CopyFrom(output_tensor)
    return response 
開發者ID:openvinotoolkit,項目名稱:model_server,代碼行數:19,代碼來源:predict_utils.py

示例7: __init__

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def __init__(self,
                 payloads,
                 labels,
                 dtype=dtypes.float32,
                 seed=None):
        """Construct a DataSet.
        one_hot arg is used only if fake_data is true.  `dtype` can be either
        `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
        `[0, 1]`.  Seed arg provides for convenient deterministic testing.
        """
        seed1, seed2 = random_seed.get_seed(seed)
        # If op level seed is not set, use whatever graph level seed is returned
        np.random.seed(seed1 if seed is None else seed2)
        dtype = dtypes.as_dtype(dtype).base_dtype
        if dtype not in (dtypes.uint8, dtypes.float32):
            raise TypeError('Invalid payload dtype %r, expected uint8 or float32' %
                            dtype)

        assert payloads.shape[0] == labels.shape[0], (
                'payloads.shape: %s labels.shape: %s' % (payloads.shape, labels.shape))
        self._num_examples = payloads.shape[0]

        if dtype == dtypes.float32:
            # Convert from [0, 255] -> [0.0, 1.0].
            payloads = payloads.astype(np.float32)
            payloads = np.multiply(payloads, 1.0 / 255.0)

        self._payloads = payloads
        self._labels = labels
        self._epochs_completed = 0
        self._index_in_epoch = 0 
開發者ID:SalikLP,項目名稱:classification-of-encrypted-traffic,代碼行數:33,代碼來源:dataset.py

示例8: __init__

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def __init__(self,
               images,
               labels,
               start_id=0,
               fake_data=False,
               one_hot=False,
               dtype=dtypes.float32):
    """Construct a DataSet.
    one_hot arg is used only if fake_data is true.  `dtype` can be either
    `uint8` to leave the input as `[0, 255]`, or `float32` to rescale into
    `[0, 1]`.
    """
    dtype = dtypes.as_dtype(dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
      raise TypeError('Invalid image dtype %r, expected uint8 or float32' %
                      dtype)
    if fake_data:
      self._num_examples = 10000
      self.one_hot = one_hot
    else:
      assert images.shape[0] == labels.shape[0], (
          'images.shape: %s labels.shape: %s' % (images.shape, labels.shape))
      self._num_examples = images.shape[0]

      # Convert shape from [num examples, rows, columns, depth]
      # to [num examples, rows*columns] (assuming depth == 1)
      assert images.shape[3] == 1
      images = images.reshape(images.shape[0],
                              images.shape[1] * images.shape[2])
      if dtype == dtypes.float32:
        # Convert from [0, 255] -> [0.0, 1.0].
        images = images.astype(numpy.float32)
        images = numpy.multiply(images, 1.0 / 255.0)
    self._ids = numpy.arange(start_id, start_id + self._num_examples)
    self._images = images
    self._labels = labels
    self._epochs_completed = 0
    self._index_in_epoch = 0 
開發者ID:GoogleCloudPlatform,項目名稱:cloudml-samples,代碼行數:40,代碼來源:input_data.py

示例9: _assert_dtype

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def _assert_dtype(images):
    """ Make sure the images are of the correct data type """
    dtype = dtypes.as_dtype(images.dtype).base_dtype
    if dtype not in (dtypes.uint8, dtypes.float32):
        raise TypeError('Invalid image dtype {0}, expected uint8 or float32'.format(dtype))

    return dtype 
開發者ID:dojoteef,項目名稱:glas,代碼行數:9,代碼來源:omniglot.py

示例10: build_tensor_info

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def build_tensor_info(tensor):
  """Utility function to build TensorInfo proto.

  Args:
    tensor: Tensor whose name, dtype and shape are used to build the TensorInfo.

  Returns:
    A TensorInfo protocol buffer constructed based on the supplied argument.
  """
  dtype_enum = dtypes.as_dtype(tensor.dtype).as_datatype_enum
  return meta_graph_pb2.TensorInfo(
      name=tensor.name,
      dtype=dtype_enum,
      tensor_shape=tensor.get_shape().as_proto()) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:16,代碼來源:utils_impl.py

示例11: __init__

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def __init__(self, scores=None, classes=None):
    """Constructor for `ClassifyOutput`.

    Args:
      scores: A float `Tensor` giving scores (sometimes but not always
          interpretable as probabilities) for each class.  May be `None`, but
          only if `classes` is set.  Interpretation varies-- see class doc.
      classes: A string `Tensor` giving predicted class labels.  May be `None`,
          but only if `scores` is set.  Interpretation varies-- see class doc.

    Raises:
      ValueError: if neither classes nor scores is set, or one of them is not a
          `Tensor` with the correct dtype.
    """
    if (scores is not None
        and not (isinstance(scores, ops.Tensor)
                 and scores.dtype.is_floating)):
      raise ValueError('Classification scores must be a float32 Tensor; '
                       'got {}'.format(scores))
    if (classes is not None
        and not (isinstance(classes, ops.Tensor)
                 and dtypes.as_dtype(classes.dtype) == dtypes.string)):
      raise ValueError('Classification classes must be a string Tensor; '
                       'got {}'.format(classes))
    if scores is None and classes is None:
      raise ValueError('At least one of scores and classes must be set.')

    self._scores = scores
    self._classes = classes 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:31,代碼來源:export_output.py

示例12: as_signature_def

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def as_signature_def(self, receiver_tensors):
    if len(receiver_tensors) != 1:
      raise ValueError('Classification input must be a single string Tensor; '
                       'got {}'.format(receiver_tensors))
    (_, examples), = receiver_tensors.items()
    if dtypes.as_dtype(examples.dtype) != dtypes.string:
      raise ValueError('Classification input must be a single string Tensor; '
                       'got {}'.format(receiver_tensors))
    return signature_def_utils.classification_signature_def(
        examples, self.classes, self.scores) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:12,代碼來源:export_output.py

示例13: zeros

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def zeros(shape, dtype=dtypes.float32, name=None):
  """Creates a tensor with all elements set to zero.

  This operation returns a tensor of type `dtype` with shape `shape` and
  all elements set to zero.

  For example:

  ```python
  tf.zeros([3, 4], tf.int32) ==> [[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
  ```

  Args:
    shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
    dtype: The type of an element in the resulting `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with all elements set to zero.
  """
  dtype = dtypes.as_dtype(dtype).base_dtype
  with ops.name_scope(name, "zeros", [shape]) as name:
    if dtype == dtypes.bool:
      zero = False
    elif dtype == dtypes.string:
      zero = ""
    else:
      zero = 0
    try:
      shape = tensor_shape.as_shape(shape)
      output = constant(zero, shape=shape, dtype=dtype, name=name)
    except (TypeError, ValueError):
      shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
      output = fill(shape, constant(zero, dtype=dtype), name=name)
  assert output.dtype.base_dtype == dtype
  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:38,代碼來源:array_ops.py

示例14: ones

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def ones(shape, dtype=dtypes.float32, name=None):
  """Creates a tensor with all elements set to 1.

  This operation returns a tensor of type `dtype` with shape `shape` and all
  elements set to 1.

  For example:

  ```python
  tf.ones([2, 3], tf.int32) ==> [[1, 1, 1], [1, 1, 1]]
  ```

  Args:
    shape: Either a list of integers, or a 1-D `Tensor` of type `int32`.
    dtype: The type of an element in the resulting `Tensor`.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` with all elements set to 1.
  """
  dtype = dtypes.as_dtype(dtype).base_dtype
  with ops.name_scope(name, "ones", [shape]) as name:
    one = True if dtype == dtypes.bool else 1
    try:
      shape = tensor_shape.as_shape(shape)
      output = constant(one, shape=shape, dtype=dtype, name=name)
    except (TypeError, ValueError):
      shape = ops.convert_to_tensor(shape, dtype=dtypes.int32, name="shape")
      output = fill(shape, constant(one, dtype=dtype), name=name)
  assert output.dtype.base_dtype == dtype
  return output 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:33,代碼來源:array_ops.py

示例15: cast

# 需要導入模塊: from tensorflow.python.framework import dtypes [as 別名]
# 或者: from tensorflow.python.framework.dtypes import as_dtype [as 別名]
def cast(x, dtype, name=None):
  """Casts a tensor to a new type.

  The operation casts `x` (in case of `Tensor`) or `x.values`
  (in case of `SparseTensor`) to `dtype`.

  For example:

  ```python
  # tensor `a` is [1.8, 2.2], dtype=tf.float
  tf.cast(a, tf.int32) ==> [1, 2]  # dtype=tf.int32
  ```

  Args:
    x: A `Tensor` or `SparseTensor`.
    dtype: The destination type.
    name: A name for the operation (optional).

  Returns:
    A `Tensor` or `SparseTensor` with same shape as `x`.

  Raises:
    TypeError: If `x` cannot be cast to the `dtype`.
  """
  base_type = dtypes.as_dtype(dtype).base_dtype
  with ops.name_scope(name, "Cast", [x]) as name:
    if isinstance(x, sparse_tensor.SparseTensor):
      values_cast = cast(x.values, base_type, name=name)
      return sparse_tensor.SparseTensor(x.indices, values_cast, x.dense_shape)
    else:
      # TODO(touts): Handle what Josh said.
      #
      # Could return ops.convert_to_tensor(x, dtype=dtype, ...)  here, but that
      # allows some conversions that cast() can't do, e.g.  casting numbers to
      # strings.
      x = ops.convert_to_tensor(x, name="x")
      if x.dtype.base_dtype == base_type:
        return x
      return gen_math_ops.cast(x, base_type, name=name) 
開發者ID:ryfeus,項目名稱:lambda-packs,代碼行數:41,代碼來源:math_ops.py


注:本文中的tensorflow.python.framework.dtypes.as_dtype方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。