當前位置: 首頁>>代碼示例>>Python>>正文


Python linear_model.RidgeCV方法代碼示例

本文整理匯總了Python中sklearn.linear_model.RidgeCV方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.RidgeCV方法的具體用法?Python linear_model.RidgeCV怎麽用?Python linear_model.RidgeCV使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.linear_model的用法示例。


在下文中一共展示了linear_model.RidgeCV方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: build

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def build(path):
    """
    Computes a linear regression using Ridge regularization.
    """
    print "Building the linear model using Ridge regression"
    start = time.time()

    # Load the data, the target is the last column.
    data  = np.loadtxt(path, delimiter=',')
    y = data[:,-1]
    X = data[:,0:-1]

    # Instantiate and fit the model.
    model = RidgeCV()
    model.fit(X, y)

    print "Finished training the linear model in {:0.3f} seconds".format(time.time() - start)
    return model 
開發者ID:oreillymedia,項目名稱:Data_Analytics_with_Hadoop,代碼行數:20,代碼來源:spark-sklearn-app.py

示例2: make_pipeline

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def make_pipeline(encoding_method):
    # static transformers from the other columns
    transformers = [(enc + '_' + col, encoders_dict[enc], [col])
                    for col, enc in clean_columns.items()]
    # adding the encoded column
    transformers += [(encoding_method, encoders_dict[encoding_method],
                      [dirty_column])]
    pipeline = Pipeline([
        # Use ColumnTransformer to combine the features
        ('union', ColumnTransformer(
            transformers=transformers,
            remainder='drop')),
        ('scaler', StandardScaler(with_mean=False)),
        ('clf', RidgeCV())
    ])
    return pipeline


#########################################################################
# Fitting each encoding methods with a RidgeCV
# --------------------------------------------
# Eventually, we loop over the different encoding methods,
# instantiate each time a new pipeline, fit it
# and store the returned cross-validation score: 
開發者ID:dirty-cat,項目名稱:dirty_cat,代碼行數:26,代碼來源:02_fit_predict_plot_employee_salaries.py

示例3: load_default

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def load_default(self, machine_list=['lasso', 'tree', 'ridge', 'random_forest', 'svm']):
        """
        Loads 4 different scikit-learn regressors by default.

        Parameters
        ----------
        machine_list: optional, list of strings
            List of default machine names to be loaded.

        """
        for machine in machine_list:
            try:
                if machine == 'lasso':
                    self.estimators_['lasso'] = linear_model.LassoCV(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'tree':
                    self.estimators_['tree'] = DecisionTreeRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'ridge':
                    self.estimators_['ridge'] = linear_model.RidgeCV().fit(self.X_k_, self.y_k_)
                if machine == 'random_forest':
                    self.estimators_['random_forest'] = RandomForestRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'svm':
                    self.estimators_['svm'] = SVR().fit(self.X_k_, self.y_k_)
            except ValueError:
                continue 
開發者ID:bhargavvader,項目名稱:pycobra,代碼行數:26,代碼來源:ewa.py

示例4: plot_reconstruction_for_different_freqs

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def plot_reconstruction_for_different_freqs(event_id, electrode, two_electrodes, from_t, to_t, time_split,
        gk_sigma=3, bipolar=True, electrodes_positive=False, electrodes_normalize=False, njobs=4):
    cond = utils.first_key(event_id)
    electrodes = get_all_electrodes_names(bipolar)
    elec_data = load_electrodes_data(event_id, bipolar, electrodes, from_t, to_t,
        subtract_min=electrodes_positive, normalize_data=electrodes_normalize)
    meg_data_dic = load_all_dics(freqs_bin, event_id, bipolar, electrodes, from_t, to_t, gk_sigma, njobs=njobs)
    reconstruct_meg(event_id, [electrode], from_t, to_t, time_split, plot_results=True, all_meg_data=meg_data_dic,
        elec_data=elec_data, title='{}: {}'.format(cond, electrode))
    reconstruct_meg(event_id, two_electrodes, from_t, to_t, time_split, optimization_method='RidgeCV',
        plot_results=True, all_meg_data=meg_data_dic,elec_data=elec_data,
        title='{}: {} and {}'.format(cond, two_electrodes[0], two_electrodes[1]))
    freqs_inds = np.array([2, 6, 9, 10, 11, 15, 16])
    plt.plot(elec_data[electrode][cond])
    plt.plot(meg_data_dic[electrode][freqs_inds, :].T, '--')
    plt.legend([electrode] + np.array(CSD_FREQS)[freqs_inds].tolist())
    # plt.title('{}: {}'.format(cond, electrode))
    plt.show() 
開發者ID:pelednoam,項目名稱:mmvt,代碼行數:20,代碼來源:beamformers_electrodes_tweak.py

示例5: get_new_clf

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def get_new_clf(solver, folds=3, alphas=100):
    kf=KFold(n_splits=folds,shuffle=False)
    if "linear" == solver:
        clf = linear_model.LinearRegression(fit_intercept=False)
    if "ridge" == solver:
        alphas =  np.arange(1/alphas, 10+ 1/alphas, 10/alphas)
        clf = linear_model.RidgeCV(alphas=alphas, fit_intercept=False, cv=kf)
    elif "lasso" == solver:
        clf=linear_model.LassoCV(n_alphas=alphas, fit_intercept=False, cv=kf)
    elif "elastic" == solver:
        clf = linear_model.ElasticNetCV(n_alphas=alphas, fit_intercept=False, cv=kf)
    return clf 
開發者ID:ibramjub,項目名稱:Fast-and-Accurate-Least-Mean-Squares-Solvers,代碼行數:14,代碼來源:Booster.py

示例6: _ridge

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def _ridge(self):
        """Function to do ridge regression."""
        # Fit a linear ridge regression model.
        regr = RidgeCV(fit_intercept=True, normalize=True)
        model = regr.fit(X=self.train_matrix, y=self.train_target)
        coeff = regr.coef_

        # Make the linear prediction.
        pred = None
        if self.predict:
            data = model.predict(self.test_matrix)
            pred = get_error(prediction=data,
                             target=self.test_target)['average']

        return coeff, pred 
開發者ID:SUNCAT-Center,項目名稱:CatLearn,代碼行數:17,代碼來源:scikit_wrapper.py

示例7: lambda_to_alpha

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def lambda_to_alpha(lambda_value, samples):
    return (lambda_value * samples) / 2.0


# Convert RidgeCV alpha back into a lambda value 
開發者ID:rd11490,項目名稱:NBA_Tutorials,代碼行數:7,代碼來源:rapm_adjust.py

示例8: calculate_rapm

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def calculate_rapm(train_x, train_y, possessions, lambdas, name, players):
    # convert our lambdas to alphas
    alphas = [lambda_to_alpha(l, train_x.shape[0]) for l in lambdas]

    # create a 5 fold CV ridgeCV model. Our target data is not centered at 0, so we want to fit to an intercept.
    clf = RidgeCV(alphas=alphas, cv=5, fit_intercept=True, normalize=False)

    # fit our training data
    model = clf.fit(train_x, train_y, sample_weight=possessions)

    # convert our list of players into a mx1 matrix
    player_arr = np.transpose(np.array(players).reshape(1, len(players)))

    # extract our coefficients into the offensive and defensive parts
    coef_offensive_array = np.transpose(model.coef_[:, 0:len(players)])
    coef_defensive_array = np.transpose(model.coef_[:, len(players):])

    # concatenate the offensive and defensive values with the playey ids into a mx3 matrix
    player_id_with_coef = np.concatenate([player_arr, coef_offensive_array, coef_defensive_array], axis=1)
    # build a dataframe from our matrix
    players_coef = pd.DataFrame(player_id_with_coef)
    intercept = model.intercept_

    # apply new column names
    players_coef.columns = ['playerId', '{0}__Off'.format(name), '{0}__Def'.format(name)]

    # Add the offesnive and defensive components together (we should really be weighing this to the number of offensive and defensive possession played as they are often not equal).
    players_coef[name] = players_coef['{0}__Off'.format(name)] + players_coef['{0}__Def'.format(name)]

    # rank the values
    players_coef['{0}_Rank'.format(name)] = players_coef[name].rank(ascending=False)
    players_coef['{0}__Off_Rank'.format(name)] = players_coef['{0}__Off'.format(name)].rank(ascending=False)
    players_coef['{0}__Def_Rank'.format(name)] = players_coef['{0}__Def'.format(name)].rank(ascending=False)

    return players_coef, intercept 
開發者ID:rd11490,項目名稱:NBA_Tutorials,代碼行數:37,代碼來源:rapm_adjust.py

示例9: calculate_rapm

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def calculate_rapm(train_x, train_y, possessions, lambdas, name, players):
    # convert our lambdas to alphas
    alphas = [lambda_to_alpha(l, train_x.shape[0]) for l in lambdas]

    # create a 5 fold CV ridgeCV model. Our target data is not centered at 0, so we want to fit to an intercept.
    clf = RidgeCV(alphas=alphas, cv=5, fit_intercept=True, normalize=False)

    # fit our training data
    model = clf.fit(train_x, train_y, sample_weight=possessions)

    # convert our list of players into a mx1 matrix
    player_arr = np.transpose(np.array(players).reshape(1, len(players)))

    # extract our coefficients into the offensive and defensive parts
    coef_offensive_array = np.transpose(model.coef_[:, 0:len(players)])
    coef_defensive_array = np.transpose(model.coef_[:, len(players):])

    # concatenate the offensive and defensive values with the playey ids into a mx3 matrix
    player_id_with_coef = np.concatenate([player_arr, coef_offensive_array, coef_defensive_array], axis=1)
    # build a dataframe from our matrix
    players_coef = pd.DataFrame(player_id_with_coef)
    intercept = model.intercept_

    # apply new column names
    players_coef.columns = ['playerId', '{0}__Off'.format(name), '{0}__Def'.format(name)]

    # Add the offesnive and defensive components together (we should really be weighing this to the number of offensive and defensive possession played as they are often not equal).
    players_coef[name] = players_coef['{0}__Off'.format(name)] + players_coef['{0}__Def'.format(name)]

    # rank the values
    players_coef['{0}_Rank'.format(name)] = players_coef[name].rank(ascending=False)
    players_coef['{0}__Off_Rank'.format(name)] = players_coef['{0}__Off'.format(name)].rank(ascending=False)
    players_coef['{0}__Def_Rank'.format(name)] = players_coef['{0}__Def'.format(name)].rank(ascending=False)

    # add the intercept for reference
    players_coef['{0}__intercept'.format(name)] = intercept[0]

    return players_coef, intercept


# a list of lambdas for cross validation 
開發者ID:rd11490,項目名稱:NBA_Tutorials,代碼行數:43,代碼來源:rapm.py

示例10: load_default

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def load_default(self, machine_list='basic'):
        """
        Loads 4 different scikit-learn regressors by default. The advanced list adds more machines. 

        Parameters
        ----------
        machine_list: optional, list of strings
            List of default machine names to be loaded.
        Returns
        -------
        self : returns an instance of self.
        """

        if machine_list == 'basic':
            machine_list = ['tree', 'ridge', 'random_forest', 'svm']
        if machine_list == 'advanced':
            machine_list=['lasso', 'tree', 'ridge', 'random_forest', 'svm', 'bayesian_ridge', 'sgd']

        self.estimators_ = {}
        for machine in machine_list:
            try:
                if machine == 'lasso':
                    self.estimators_['lasso'] = linear_model.LassoCV(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'tree':
                    self.estimators_['tree'] = DecisionTreeRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'ridge':
                    self.estimators_['ridge'] = linear_model.RidgeCV().fit(self.X_k_, self.y_k_)
                if machine == 'random_forest':
                    self.estimators_['random_forest'] = RandomForestRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'svm':
                    self.estimators_['svm'] = LinearSVR(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'sgd':
                    self.estimators_['sgd'] = linear_model.SGDRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'bayesian_ridge':
                    self.estimators_['bayesian_ridge'] = linear_model.BayesianRidge().fit(self.X_k_, self.y_k_)
            except ValueError:
                continue
        return self 
開發者ID:bhargavvader,項目名稱:pycobra,代碼行數:40,代碼來源:cobra.py

示例11: load_default

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def load_default(self, machine_list='basic'):
        """
        Loads 4 different scikit-learn regressors by default. The advanced list adds more machines. 
        Parameters
        ----------
        machine_list: optional, list of strings
            List of default machine names to be loaded. 
            Default is basic,
        Returns
        -------
        self : returns an instance of self.
        """
        if machine_list == 'basic':
            machine_list = ['tree', 'ridge', 'random_forest', 'svm']
        if machine_list == 'advanced':
            machine_list=['lasso', 'tree', 'ridge', 'random_forest', 'svm', 'bayesian_ridge', 'sgd']

        self.estimators_ = {}
        for machine in machine_list:
            try:
                if machine == 'lasso':
                    self.estimators_['lasso'] = linear_model.LassoCV(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'tree':
                    self.estimators_['tree'] = DecisionTreeRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'ridge':
                    self.estimators_['ridge'] = linear_model.RidgeCV().fit(self.X_k_, self.y_k_)
                if machine == 'random_forest':
                    self.estimators_['random_forest'] = RandomForestRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'svm':
                    self.estimators_['svm'] = SVR().fit(self.X_k_, self.y_k_)
                if machine == 'sgd':
                    self.estimators_['sgd'] = linear_model.SGDRegressor(random_state=self.random_state).fit(self.X_k_, self.y_k_)
                if machine == 'bayesian_ridge':
                    self.estimators_['bayesian_ridge'] = linear_model.BayesianRidge().fit(self.X_k_, self.y_k_)
            except ValueError:
                continue
        return self 
開發者ID:bhargavvader,項目名稱:pycobra,代碼行數:39,代碼來源:kernelcobra.py

示例12: test_objectmapper

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def test_objectmapper(self):
        df = pdml.ModelFrame([])
        self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
        self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
        self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
        self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)

        self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)

        self.assertIs(df.linear_model.Lars, lm.Lars)
        self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
        self.assertIs(df.linear_model.Lasso, lm.Lasso)
        self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
        self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
        self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
        self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)

        self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
        self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
        self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
        self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
        self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
        self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
        self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)

        self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
        self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
        self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
        self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)

        self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
        self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
        self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
        self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
        self.assertIs(df.linear_model.Ridge, lm.Ridge)
        self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
        self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
        self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
        self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
        self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
        self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor) 
開發者ID:pandas-ml,項目名稱:pandas-ml,代碼行數:43,代碼來源:test_linear_model.py

示例13: calc_optimization_features

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def calc_optimization_features(optimization_method, freqs_bins, cond, meg_data_dic, elec_data, electrodes, from_t, to_t, optimization_params={}):
    # scorer = make_scorer(rol_corr, False)
    cv_parameters = []
    if optimization_method in ['Ridge', 'RidgeCV', 'Lasso', 'LassoCV', 'ElasticNet', 'ElasticNetCV']:
        # vstack all meg data, such that X.shape = T*n X F, where n is the electrodes num
        # Y is T*n * 1
        X = np.hstack((meg_data_dic[electrode][:, from_t:to_t] for electrode in electrodes))
        Y = np.hstack((elec_data[electrode][cond][from_t:to_t] for electrode in electrodes))
        funcs_dic = {'Ridge': Ridge(alpha=0.1), 'RidgeCV':RidgeCV(np.logspace(0, -10, 11)), # scoring=scorer
            'Lasso': Lasso(alpha=1.0/X.shape[0]), 'LassoCV':LassoCV(alphas=np.logspace(0, -10, 11), max_iter=1000),
            'ElasticNetCV': ElasticNetCV(alphas= np.logspace(0, -10, 11), l1_ratio=np.linspace(0, 1, 11))}
        clf = funcs_dic[optimization_method]
        clf.fit(X.T, Y)
        p = clf.coef_
        if len(p) != len(freqs_bins):
            raise Exception('{} (len(clf.coef)) != {} (len(freqs_bin))!!!'.format(len(p), len(freqs_bins)))
        if optimization_method in ['RidgeCV', 'LassoCV']:
            cv_parameters = clf.alpha_
        elif optimization_method == 'ElasticNetCV':
            cv_parameters = [clf.alpha_, clf.l1_ratio_]
        args = [(meg_pred(p, meg_data_dic[electrode][:, from_t:to_t]), elec_data[electrode][cond][from_t:to_t]) for electrode in electrodes]
        p0 = leastsq(post_ridge_err_func, [1], args=args, maxfev=0)[0]
        p = np.hstack((p0, p))
    elif optimization_method in ['leastsq', 'dtw', 'minmax', 'diff_rms', 'rol_corr']:
        args = ([(meg_data_dic[electrode][:, from_t:to_t], elec_data[electrode][cond][from_t:to_t]) for electrode in electrodes], optimization_params)
        p0 = np.ones((1, len(freqs_bins)+1))
        funcs_dic = {'leastsq': partial(leastsq, func=err_func, x0=p0, args=args),
                     'dtw': partial(minimize, fun=dtw_err_func, x0=p0, args=args),
                     'minmax': partial(minimize, fun=minmax_err_func, x0=p0, args=args),
                     'diff_rms': partial(minimize, fun=min_diff_rms_err_func, x0=p0, args=args),
                     'rol_corr': partial(minimize, fun=max_rol_corr, x0=p0, args=args)}
        res = funcs_dic[optimization_method]()
        p = res[0] if optimization_method=='leastsq' else res.x
        cv_parameters = optimization_params
    else:
        raise Exception('Unknown optimization_method! {}'.format(optimization_method))
    return p, cv_parameters 
開發者ID:pelednoam,項目名稱:mmvt,代碼行數:39,代碼來源:beamformers_electrodes_tweak.py

示例14: find_best_freqs_subset

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def find_best_freqs_subset(event_id, bipolar, freqs_bins, from_t, to_t, time_split, combs,
        optimization_method='RidgeCV', optimization_params={}, k=3, gk_sigma=3, njobs=6):
    freqs_bins = sorted(freqs_bins)
    all_electrodes = get_all_electrodes_names(bipolar)
    elec_data = load_electrodes_data(event_id, bipolar, all_electrodes, from_t, to_t,
            subtract_min=False, normalize_data=False)
    meg_data_dic = load_all_dics(freqs_bins, event_id, bipolar, all_electrodes, from_t, to_t, gk_sigma,
        dont_calc_new_csd=True, njobs=njobs)

    uuid = utils.rand_letters(5)
    results_fol = get_results_fol(optimization_method)
    partial_results_fol = os.path.join(results_fol, 'best_freqs_subset_{}'.format(uuid))
    utils.make_dir(results_fol)
    utils.make_dir(partial_results_fol)

    cond = utils.first_key(event_id)
    all_freqs_bins_subsets = list(utils.superset(freqs_bins))
    random.shuffle(all_freqs_bins_subsets)
    N = len(all_freqs_bins_subsets)
    print('There are {} freqs subsets'.format(N))
    all_freqs_bins_subsets_chunks = utils.chunks(all_freqs_bins_subsets, int(len(all_freqs_bins_subsets) / njobs))
    params = [Bunch(event_id=event_id, bipolar=bipolar, freqs_bins_chunks=freqs_bins_subsets_chunk, cond=cond,
            from_t=from_t, to_t=to_t, freqs_bins=freqs_bins, partial_results_fol=partial_results_fol,
            time_split=time_split, only_sig_electrodes=False, only_from_same_lead=True, electrodes_positive=False,
            electrodes_normalize=False, gk_sigma=gk_sigma, k=k, do_plot_results=False, do_save_partial_results=False,
            optimization_params=optimization_params, check_only_pred_score=True, njobs=1, N=int(N / njobs),
            elec_data=elec_data, meg_data_dic=meg_data_dic, all_electrodes=all_electrodes,
            optimization_method=optimization_method, error_calc_method='rol_corr', error_threshold=30, combs=combs) for
            freqs_bins_subsets_chunk in all_freqs_bins_subsets_chunks]
    results = utils.run_parallel(_find_best_freqs_subset_parallel, params, njobs)
    all_results = []
    for chunk_results in results:
        all_results.extend(chunk_results)
    params_suffix = utils.params_suffix(optimization_params)
    output_file = os.path.join(results_fol, 'best_freqs_subset_{}_{}_{}{}.pkl'.format(cond, uuid, k, params_suffix))
    print('saving results to {}'.format(output_file))
    utils.save((chunk_results, freqs_bins), output_file) 
開發者ID:pelednoam,項目名稱:mmvt,代碼行數:39,代碼來源:beamformers_electrodes_tweak.py

示例15: regularization_m

# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RidgeCV [as 別名]
def regularization_m(X_re,y_re,predFeat=False):
    n_alphas=200
    alphas=np.logspace(1, 8, n_alphas)
    coefs=[]
    n=0
    for a in alphas:
        n+=1
        ridge=Ridge(alpha=a, fit_intercept=False)
        ridge.fit(X_re,y_re)
        coefs.append(ridge.coef_)
#    print(n,coefs)
    ax = plt.gca()
    ax.plot(alphas, coefs)
    ax.set_xscale('log')
    ax.set_xlim(ax.get_xlim()[::-1])  # reverse axis
    plt.xlabel('alpha')
    plt.ylabel('weights')
    plt.title('Ridge coefficients as a function of the regularization')
    plt.axis('tight')
    plt.show()   
        
    ridge=Ridge(alpha=28.6)  #Ridge預先確定a值
    ridge.fit(X_re,y_re)
    print(ridge.coef_,ridge.intercept_,ridge.alpha)
    
    redgecv=RidgeCV(alphas=alphas) #輸入多個a值,模型自行擇優選取
    redgecv.fit(X_re,y_re)
    print(redgecv.coef_,redgecv.intercept_,redgecv.alpha_)
    
    lasso=Lasso(alpha=0.01)
    lasso.fit(X_re,y_re)
    print(lasso.coef_,lasso.intercept_ ,lasso.alpha)
    
    elasticnet=ElasticNet(alpha=1.0,l1_ratio=0.5)
    elasticnet.fit(X_re,y_re)
    print(elasticnet.coef_,elasticnet.intercept_ ,elasticnet.alpha)
    
    if type(predFeat).__module__=='numpy':
        return redgecv.predict(predFeat) 
開發者ID:richieBao,項目名稱:python-urbanPlanning,代碼行數:41,代碼來源:poiRegression.py


注:本文中的sklearn.linear_model.RidgeCV方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。