本文整理匯總了Python中sklearn.linear_model.RandomizedLogisticRegression方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.RandomizedLogisticRegression方法的具體用法?Python linear_model.RandomizedLogisticRegression怎麽用?Python linear_model.RandomizedLogisticRegression使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.linear_model
的用法示例。
在下文中一共展示了linear_model.RandomizedLogisticRegression方法的5個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: run_logreg
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RandomizedLogisticRegression [as 別名]
def run_logreg(X_train, y_train, selection_threshold=0.2):
print("\nrunning logistic regression...")
print("using a selection threshold of {}".format(selection_threshold))
pipe = Pipeline(
[
(
"feature_selection",
RandomizedLogisticRegression(selection_threshold=selection_threshold),
),
("classification", LogisticRegression()),
]
)
pipe.fit(X_train, y_train)
print("training accuracy : {}".format(pipe.score(X_train, y_train)))
print("testing accuracy : {}".format(pipe.score(X_test, y_test)))
return pipe
示例2: get_features
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RandomizedLogisticRegression [as 別名]
def get_features(X_train, y_train, names, selection_threshold=0.2):
print("\ngetting features with randomized logistic regression...")
print("using a selection threshold of {}".format(selection_threshold))
randomized_logistic = RandomizedLogisticRegression(
selection_threshold=selection_threshold
)
randomized_logistic.fit(X_train, y_train)
mask = randomized_logistic.get_support()
features = np.array(names)[mask]
print("found {} ngrams:".format(len([f for f in features])))
print([f for f in features])
return features
示例3: _rank_ngrams_using_cv
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RandomizedLogisticRegression [as 別名]
def _rank_ngrams_using_cv(self, examples, labels, list_of_ngrams):
from sklearn import linear_model
X = np.array(self._ngrams_in_sentences(examples, list_of_ngrams))
y = self.encode_labels(labels)
clf = linear_model.RandomizedLogisticRegression(C=1)
clf.fit(X, y)
# sort the ngrams according to the classification score
scores = clf.scores_
sorted_idxs = sorted(enumerate(scores), key=lambda x: -1 * x[1])
sorted_ngrams = [list_of_ngrams[i[0]] for i in sorted_idxs]
return sorted_ngrams
示例4: test_objectmapper
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RandomizedLogisticRegression [as 別名]
def test_objectmapper(self):
df = pdml.ModelFrame([])
self.assertIs(df.linear_model.ARDRegression, lm.ARDRegression)
self.assertIs(df.linear_model.BayesianRidge, lm.BayesianRidge)
self.assertIs(df.linear_model.ElasticNet, lm.ElasticNet)
self.assertIs(df.linear_model.ElasticNetCV, lm.ElasticNetCV)
self.assertIs(df.linear_model.HuberRegressor, lm.HuberRegressor)
self.assertIs(df.linear_model.Lars, lm.Lars)
self.assertIs(df.linear_model.LarsCV, lm.LarsCV)
self.assertIs(df.linear_model.Lasso, lm.Lasso)
self.assertIs(df.linear_model.LassoCV, lm.LassoCV)
self.assertIs(df.linear_model.LassoLars, lm.LassoLars)
self.assertIs(df.linear_model.LassoLarsCV, lm.LassoLarsCV)
self.assertIs(df.linear_model.LassoLarsIC, lm.LassoLarsIC)
self.assertIs(df.linear_model.LinearRegression, lm.LinearRegression)
self.assertIs(df.linear_model.LogisticRegression, lm.LogisticRegression)
self.assertIs(df.linear_model.LogisticRegressionCV, lm.LogisticRegressionCV)
self.assertIs(df.linear_model.MultiTaskLasso, lm.MultiTaskLasso)
self.assertIs(df.linear_model.MultiTaskElasticNet, lm.MultiTaskElasticNet)
self.assertIs(df.linear_model.MultiTaskLassoCV, lm.MultiTaskLassoCV)
self.assertIs(df.linear_model.MultiTaskElasticNetCV, lm.MultiTaskElasticNetCV)
self.assertIs(df.linear_model.OrthogonalMatchingPursuit, lm.OrthogonalMatchingPursuit)
self.assertIs(df.linear_model.OrthogonalMatchingPursuitCV, lm.OrthogonalMatchingPursuitCV)
self.assertIs(df.linear_model.PassiveAggressiveClassifier, lm.PassiveAggressiveClassifier)
self.assertIs(df.linear_model.PassiveAggressiveRegressor, lm.PassiveAggressiveRegressor)
self.assertIs(df.linear_model.Perceptron, lm.Perceptron)
self.assertIs(df.linear_model.RandomizedLasso, lm.RandomizedLasso)
self.assertIs(df.linear_model.RandomizedLogisticRegression, lm.RandomizedLogisticRegression)
self.assertIs(df.linear_model.RANSACRegressor, lm.RANSACRegressor)
self.assertIs(df.linear_model.Ridge, lm.Ridge)
self.assertIs(df.linear_model.RidgeClassifier, lm.RidgeClassifier)
self.assertIs(df.linear_model.RidgeClassifierCV, lm.RidgeClassifierCV)
self.assertIs(df.linear_model.RidgeCV, lm.RidgeCV)
self.assertIs(df.linear_model.SGDClassifier, lm.SGDClassifier)
self.assertIs(df.linear_model.SGDRegressor, lm.SGDRegressor)
self.assertIs(df.linear_model.TheilSenRegressor, lm.TheilSenRegressor)
示例5: GetKFeatures
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import RandomizedLogisticRegression [as 別名]
def GetKFeatures(filename, method='RFE',kbest=30,alpha=0.01, reduceMatrix = True):
'''
Gets best features using chosen method
(K-best, RFE, RFECV,'L1' (RandomizedLogisticRegression),'Tree' (ExtraTreesClassifier), mrmr),
then prints top K features' names (from featNames).
If reduceMatrix = True, then also returns X reduced to the K best features.
Available methods' names are: 'RFE','RFECV','RandomizedLogisticRegression','K-best','ExtraTreesClassifier'..
Note, that effectiveyl, Any scikit learn method could be used, if correctly imported..
'''
#est = method()
'''
Gets the K-best features (filtered by FDR, then select best ranked by t-test , more advanced options can be implemented).
Save the data/matrix with the resulting/kept features to a new output file, "REDUCED_Feat.csv"
'''
features, labels, lb_encoder,featureNames = load_data(filename)
X, y = features, labels
# change the names as ints back to strings
class_names=lb_encoder.inverse_transform(y)
print("Data and labels imported. PreFilter Feature matrix shape:")
print(X.shape)
selectK = SelectKBest(k=kbest)
selectK.fit(X,y)
selectK_mask=selectK.get_support()
K_featnames = featureNames[selectK_mask]
print('X After K filter:',X.shape)
print("K_featnames: %s" %(K_featnames))
if reduceMatrix ==True :
Reduced_df = pd.read_csv(filename, index_col=0)
Reduced_df = Reduced_df[Reduced_df.columns[selectK_mask]]
Reduced_df.to_csv('REDUCED_Feat.csv')
print('Saved to REDUCED_Feat.csv')
return Reduced_df
#WORKS! But unreadable with too many features!