本文整理匯總了Python中sklearn.linear_model.LogisticRegressionCV方法的典型用法代碼示例。如果您正苦於以下問題:Python linear_model.LogisticRegressionCV方法的具體用法?Python linear_model.LogisticRegressionCV怎麽用?Python linear_model.LogisticRegressionCV使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類sklearn.linear_model
的用法示例。
在下文中一共展示了linear_model.LogisticRegressionCV方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: train_lr_rfeinman
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def train_lr_rfeinman(densities_pos, densities_neg, uncerts_pos, uncerts_neg):
"""
TODO
:param densities_pos:
:param densities_neg:
:param uncerts_pos:
:param uncerts_neg:
:return:
"""
values_neg = np.concatenate(
(densities_neg.reshape((1, -1)),
uncerts_neg.reshape((1, -1))),
axis=0).transpose([1, 0])
values_pos = np.concatenate(
(densities_pos.reshape((1, -1)),
uncerts_pos.reshape((1, -1))),
axis=0).transpose([1, 0])
values = np.concatenate((values_neg, values_pos))
labels = np.concatenate(
(np.zeros_like(densities_neg), np.ones_like(densities_pos)))
lr = LogisticRegressionCV(n_jobs=-1).fit(values, labels)
return values, labels, lr
示例2: __init__
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def __init__(self, G, labels, nw_name, num_shuffles, traintest_fracs, trainvalid_frac, dim=128,
nc_model=None):
# General evaluation parameters
self.G = G
self.labels = labels[np.argsort(labels[:, 0]), :]
self.nw_name = nw_name
self.traintest_fracs = traintest_fracs
self.trainvalid_frac = trainvalid_frac
self.shuffles = self._init_shuffles(num_shuffles)
self.dim = dim
if nc_model is None:
self.nc_model = LogisticRegressionCV(Cs=10, cv=3, penalty='l2', multi_class='ovr')
else:
self.nc_model = nc_model
# Run some simple input checks
self._check_labels()
示例3: lr_with_scale
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def lr_with_scale():
"""
Submission: lr_with_scale_0620_04.csv
E_val: <missing>
E_in: 0.857351105162
E_out: 0.854097855439904
"""
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
X = util.fetch(util.cache_path('train_X_before_2014-08-01_22-00-47'))
y = util.fetch(util.cache_path('train_y_before_2014-08-01_22-00-47'))
raw_scaler = StandardScaler()
raw_scaler.fit(X)
X_scaled = raw_scaler.transform(X)
clf = LogisticRegressionCV(cv=10, scoring='roc_auc', n_jobs=-1)
clf.fit(X_scaled, y)
print(auc_score(clf, X_scaled, y))
to_submission(Pipeline([('scale_raw', raw_scaler),
('lr', clf)]), 'lr_with_scale_0620_04')
示例4: test_model_logistic_regression_cv_binary_class
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def test_model_logistic_regression_cv_binary_class(self):
model, X = fit_classification_model(
linear_model.LogisticRegressionCV(max_iter=100), 2)
model_onnx = convert_sklearn(
model, "logistic regression cv",
[("input", FloatTensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnLogitisticCVRegressionBinary",
# Operator cast-1 is not implemented in onnxruntime
allow_failure="StrictVersion(onnx.__version__)"
" < StrictVersion('1.3') or "
"StrictVersion(onnxruntime.__version__)"
" <= StrictVersion('0.2.1')",
)
示例5: test_model_logistic_regression_cv_int
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def test_model_logistic_regression_cv_int(self):
model, X = fit_classification_model(
linear_model.LogisticRegressionCV(max_iter=100), 4, is_int=True)
model_onnx = convert_sklearn(
model, "logistic regression cv",
[("input", Int64TensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnLogitisticRegressionCVInt",
# Operator cast-1 is not implemented in onnxruntime
allow_failure="StrictVersion(onnx.__version__)"
" < StrictVersion('1.3') or "
"StrictVersion(onnxruntime.__version__)"
" <= StrictVersion('0.2.1')",
)
示例6: test_model_logistic_regression_cv_bool
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def test_model_logistic_regression_cv_bool(self):
model, X = fit_classification_model(
linear_model.LogisticRegressionCV(max_iter=100), 3, is_bool=True)
model_onnx = convert_sklearn(
model, "logistic regression cv",
[("input", BooleanTensorType([None, X.shape[1]]))])
self.assertIsNotNone(model_onnx)
dump_data_and_model(
X,
model,
model_onnx,
basename="SklearnLogitisticRegressionCVBool",
# Operator cast-1 is not implemented in onnxruntime
allow_failure="StrictVersion(onnx.__version__)"
" < StrictVersion('1.3') or "
"StrictVersion(onnxruntime.__version__)"
" <= StrictVersion('0.2.1')",
)
示例7: test_regularization
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def test_regularization():
"""Test for fitting the model."""
X = rnd.randn(10, 2)
y = np.hstack((-np.ones((5,)), np.ones((5,))))
Z = rnd.randn(10, 2) + 1
clf = ImportanceWeightedClassifier(loss_function='lr',
l2_regularization=None)
assert isinstance(clf.clf, LogisticRegressionCV)
clf = ImportanceWeightedClassifier(loss_function='lr',
l2_regularization=1.0)
assert isinstance(clf.clf, LogisticRegression)
示例8: train_lr
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def train_lr(X, y):
"""
TODO
:param X: the data samples
:param y: the labels
:return:
"""
lr = LogisticRegressionCV(n_jobs=-1).fit(X, y)
return lr
示例9: compute_roc_auc
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def compute_roc_auc(test_sa, adv_sa, split=1000):
tr_test_sa = np.array(test_sa[:split])
tr_adv_sa = np.array(adv_sa[:split])
tr_values = np.concatenate(
(tr_test_sa.reshape(-1, 1), tr_adv_sa.reshape(-1, 1)), axis=0
)
tr_labels = np.concatenate(
(np.zeros_like(tr_test_sa), np.ones_like(tr_adv_sa)), axis=0
)
lr = LogisticRegressionCV(cv=5, n_jobs=-1).fit(tr_values, tr_labels)
ts_test_sa = np.array(test_sa[split:])
ts_adv_sa = np.array(adv_sa[split:])
values = np.concatenate(
(ts_test_sa.reshape(-1, 1), ts_adv_sa.reshape(-1, 1)), axis=0
)
labels = np.concatenate(
(np.zeros_like(ts_test_sa), np.ones_like(ts_adv_sa)), axis=0
)
probs = lr.predict_proba(values)[:, 1]
_, _, auc_score = compute_roc(
probs_neg=probs[: (len(test_sa) - split)],
probs_pos=probs[(len(test_sa) - split) :],
)
return auc_score
示例10: lp_model
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def lp_model(self):
model = self._config.get('GENERAL', 'lp_model')
if model == 'LogisticRegression':
return LogisticRegression(solver='liblinear')
elif model == 'LogisticRegressionCV':
return LogisticRegressionCV(Cs=10, cv=5, penalty='l2', scoring='roc_auc', solver='lbfgs', max_iter=100)
elif model == 'DecisionTreeClassifier':
return DecisionTreeClassifier()
elif model == 'SVM':
parameters = {'C': [0.1, 1, 10, 100, 1000]}
return GridSearchCV(LinearSVC(), parameters, cv=5)
else:
return util.auto_import(model)
示例11: test_changed_only
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def test_changed_only():
# Make sure the changed_only param is correctly used
set_config(print_changed_only=True)
lr = LogisticRegression(C=99)
expected = """LogisticRegression(C=99)"""
assert lr.__repr__() == expected
# Check with a repr that doesn't fit on a single line
lr = LogisticRegression(C=99, class_weight=.4, fit_intercept=False,
tol=1234, verbose=True)
expected = """
LogisticRegression(C=99, class_weight=0.4, fit_intercept=False, tol=1234,
verbose=True)"""
expected = expected[1:] # remove first \n
assert lr.__repr__() == expected
imputer = SimpleImputer(missing_values=0)
expected = """SimpleImputer(missing_values=0)"""
assert imputer.__repr__() == expected
# Defaults to np.NaN, trying with float('NaN')
imputer = SimpleImputer(missing_values=float('NaN'))
expected = """SimpleImputer()"""
assert imputer.__repr__() == expected
# make sure array parameters don't throw error (see #13583)
repr(LogisticRegressionCV(Cs=np.array([0.1, 1])))
set_config(print_changed_only=False)
示例12: lr
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def lr():
"""
Submission: lr_0618.csv
E_val: <missing>
E_in: <missing>
E_out: 0.8119110960575004
"""
from sklearn.linear_model import LogisticRegressionCV
X = util.fetch(util.cache_path('train_X_before_2014-08-01_22-00-47'))
y = util.fetch(util.cache_path('train_y_before_2014-08-01_22-00-47'))
clf = LogisticRegressionCV(cv=10, scoring='roc_auc', n_jobs=-1)
clf.fit(X, y)
print(auc_score(clf, X, y))
to_submission(clf, 'lr_0618_xxx')
示例13: lr_with_fs
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def lr_with_fs():
"""
Submission: lr_with_fs_0620_02.csv
E_val: <missing>
E_in: 0.856252488379
E_out: 0.8552577388980213
"""
from sklearn.linear_model import LogisticRegressionCV
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
X = util.fetch(util.cache_path('train_X_before_2014-08-01_22-00-47'))
y = util.fetch(util.cache_path('train_y_before_2014-08-01_22-00-47'))
raw_scaler = StandardScaler()
raw_scaler.fit(X)
X_scaled = raw_scaler.transform(X)
rfe = util.fetch(util.cache_path('feature_selection.RFE.21'))
X_pruned = rfe.transform(X_scaled)
new_scaler = StandardScaler()
new_scaler.fit(X_pruned)
X_new = new_scaler.transform(X_pruned)
clf = LogisticRegressionCV(cv=10, scoring='roc_auc', n_jobs=-1)
clf.fit(X_new, y)
print(auc_score(clf, X_new, y))
to_submission(Pipeline([('scale_raw', raw_scaler),
('rfe', rfe),
('scale_new', new_scaler),
('lr', clf)]), 'lr_with_fs_0620_02')
示例14: getTransition
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def getTransition(self,dTD,dTG,dMb,FCUT=1):
G = self.getFC()
dFC = {item[0].upper(): item[1] for item in G}
etfID = [item[1] for item in self.etf]
HGL = [item.upper() for item in self.GL]
dR={0:2,1:-2,2:0}
try:
[X, Y,U,D] = buildTrain(G, dTG, etfID,self.GL,FCUT)
dR = {0: U, 1: D, 2: 0}
LR = LogisticRegressionCV(penalty='l1', Cs=[1.5, 2, 3, 4, 5], solver='liblinear', multi_class='ovr')
LR.fit(X, Y)
CE = LR.coef_
petf = parseLR(self.etf, CE)
# ---------------------------------------------------------
XX = []
for i in HGL:
if i in dTG:
tfi = dTG[i]
xi = [1 if item in tfi else 0 for item in etfID]
else:
xi = [0] * len(etfID)
XX.append(xi)
YY = LR.predict(XX)
self.etf = petf
#pdb.set_trace()
except:
YY = [0 if dFC[item] > FCUT else 1 if dFC[item] < -1 * FCUT else 2 for item in HGL]
YY = [dR[item] for item in YY]
return YY
#-------------------------------------------------------------------
示例15: logistic_regression_cv
# 需要導入模塊: from sklearn import linear_model [as 別名]
# 或者: from sklearn.linear_model import LogisticRegressionCV [as 別名]
def logistic_regression_cv():
"""Logistic regression with 5 folds cross validation."""
return LogisticRegressionCV(Cs=10, cv=KFold(n_splits=5))