當前位置: 首頁>>代碼示例>>Python>>正文


Python ensemble.BaggingClassifier方法代碼示例

本文整理匯總了Python中sklearn.ensemble.BaggingClassifier方法的典型用法代碼示例。如果您正苦於以下問題:Python ensemble.BaggingClassifier方法的具體用法?Python ensemble.BaggingClassifier怎麽用?Python ensemble.BaggingClassifier使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在sklearn.ensemble的用法示例。


在下文中一共展示了ensemble.BaggingClassifier方法的15個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: test_classification

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(tol=1e-3),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC(gamma="scale")]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:23,代碼來源:test_bagging.py

示例2: test_warm_start

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_warm_start(random_state=42):
    # Test if fitting incrementally with warm start gives a forest of the
    # right size and the same results as a normal fit.
    X, y = make_hastie_10_2(n_samples=20, random_state=1)

    clf_ws = None
    for n_estimators in [5, 10]:
        if clf_ws is None:
            clf_ws = BaggingClassifier(n_estimators=n_estimators,
                                       random_state=random_state,
                                       warm_start=True)
        else:
            clf_ws.set_params(n_estimators=n_estimators)
        clf_ws.fit(X, y)
        assert_equal(len(clf_ws), n_estimators)

    clf_no_ws = BaggingClassifier(n_estimators=10, random_state=random_state,
                                  warm_start=False)
    clf_no_ws.fit(X, y)

    assert_equal(set([tree.random_state for tree in clf_ws]),
                 set([tree.random_state for tree in clf_no_ws])) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:24,代碼來源:test_bagging.py

示例3: test_warm_start_equal_n_estimators

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_warm_start_equal_n_estimators():
    # Test that nothing happens when fitting without increasing n_estimators
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)

    clf = BaggingClassifier(n_estimators=5, warm_start=True, random_state=83)
    clf.fit(X_train, y_train)

    y_pred = clf.predict(X_test)
    # modify X to nonsense values, this should not change anything
    X_train += 1.

    assert_warns_message(UserWarning,
                         "Warm-start fitting without increasing n_estimators does not",
                         clf.fit, X_train, y_train)
    assert_array_equal(y_pred, clf.predict(X_test)) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:18,代碼來源:test_bagging.py

示例4: test_warm_start_equivalence

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_warm_start_equivalence():
    # warm started classifier with 5+5 estimators should be equivalent to
    # one classifier with 10 estimators
    X, y = make_hastie_10_2(n_samples=20, random_state=1)
    X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=43)

    clf_ws = BaggingClassifier(n_estimators=5, warm_start=True,
                               random_state=3141)
    clf_ws.fit(X_train, y_train)
    clf_ws.set_params(n_estimators=10)
    clf_ws.fit(X_train, y_train)
    y1 = clf_ws.predict(X_test)

    clf = BaggingClassifier(n_estimators=10, warm_start=False,
                            random_state=3141)
    clf.fit(X_train, y_train)
    y2 = clf.predict(X_test)

    assert_array_almost_equal(y1, y2) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:21,代碼來源:test_bagging.py

示例5: main

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def main():
    indata = np.load(inputs)
    training_data = indata['data_training']
    training_labels = indata['label_training']
    validation_data = indata['data_val']
    validation_labels = indata['label_val']
    ts = range(1,11)
    sampling_rates = [round(0.1*t, 1) for t in ts]
    forest_sizes = [10, 20, 50, 100]


    for sampling_rate in sampling_rates:
        legend_label = 'sampling rate='+str(sampling_rate)
        accuracy_results = []
        for forest_size in forest_sizes:
            rf_clf = ensemble.BaggingClassifier(n_estimators=forest_size, max_samples=sampling_rate)
            rf_clf.fit(training_data, training_labels)
            predictions = rf_clf.predict(validation_data)
            accuracy = metrics.accuracy_score(validation_labels, predictions)
            accuracy_results.append(accuracy)
        plt.plot(range(len(forest_sizes)), accuracy_results, label=legend_label)

    plt.xticks(range(len(forest_sizes)), forest_sizes, size='small')
    plt.legend()
    plt.show() 
開發者ID:hanhanwu,項目名稱:Hanhan-Spark-Python,代碼行數:27,代碼來源:random_forest_with_bagging.py

示例6: main

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def main():
	# prepare data
	trainingSet=[]
	testSet=[]
	accuracy = 0.0
	split = 0.25
	loadDataset('../Dataset/LDAdata.csv', split, trainingSet, testSet)
	print('Train set: ' + repr(len(trainingSet)))
	print('Test set: ' + repr(len(testSet)))
	trainData = np.array(trainingSet)[:,0:np.array(trainingSet).shape[1] - 1]
	columns = trainData.shape[1] 
	X = np.array(trainData)
	y = np.array(trainingSet)[:,columns]
	clf = BaggingClassifier(LDA())
	clf.fit(X, y)
	testData = np.array(testSet)[:,0:np.array(trainingSet).shape[1] - 1]
	X_test = np.array(testData)
	y_test = np.array(testSet)[:,columns]
	accuracy = clf.score(X_test,y_test)
	accuracy *= 100
	print("Accuracy %:",accuracy) 
開發者ID:DedSecInside,項目名稱:Awesome-Scripts,代碼行數:23,代碼來源:BaggedLDA.py

示例7: main

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def main():
	# prepare data
	trainingSet=[]
	testSet=[]
	accuracy = 0.0
	split = 0.25
	loadDataset('../Dataset/combined.csv', split, trainingSet, testSet)
	print 'Train set: ' + repr(len(trainingSet))
	print 'Test set: ' + repr(len(testSet))
	# generate predictions
	predictions=[]
	trainData = np.array(trainingSet)[:,0:np.array(trainingSet).shape[1] - 1]
  	columns = trainData.shape[1] 
	X = np.array(trainData)
	y = np.array(trainingSet)[:,columns]
	clf = BaggingClassifier(QDA())
	clf.fit(X, y)
	testData = np.array(testSet)[:,0:np.array(trainingSet).shape[1] - 1]
	X_test = np.array(testData)
	y_test = np.array(testSet)[:,columns]
	accuracy = clf.score(X_test,y_test)
	accuracy *= 100
	print("Accuracy %:",accuracy) 
開發者ID:DedSecInside,項目名稱:Awesome-Scripts,代碼行數:25,代碼來源:BaggedQDA.py

示例8: main

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def main():
	# prepare data
	trainingSet=[]
	testSet=[]
	accuracy = 0.0
	split = 0.25
	loadDataset('../Dataset/combined.csv', split, trainingSet, testSet)
	print 'Train set: ' + repr(len(trainingSet))
	print 'Test set: ' + repr(len(testSet))
	# generate predictions
	predictions=[]
	trainData = np.array(trainingSet)[:,0:np.array(trainingSet).shape[1] - 1]
  	columns = trainData.shape[1] 
	X = np.array(trainData)
	y = np.array(trainingSet)[:,columns]
	clf = BaggingClassifier(KNN(n_neighbors=10, weights='uniform', algorithm='auto', leaf_size=10, p=1, metric='minkowski', metric_params=None, n_jobs=1))
	clf.fit(X, y)
	testData = np.array(testSet)[:,0:np.array(trainingSet).shape[1] - 1]
	X_test = np.array(testData)
	y_test = np.array(testSet)[:,columns]
	accuracy = clf.score(X_test,y_test)
	accuracy *= 100
	print("Accuracy %:",accuracy) 
開發者ID:DedSecInside,項目名稱:Awesome-Scripts,代碼行數:25,代碼來源:BaggedKNN.py

示例9: main

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def main():
	# prepare data
	trainingSet=[]
	testSet=[]
	accuracy = 0.0
	split = 0.25
	loadDataset('../Dataset/combined.csv', split, trainingSet, testSet)
	print 'Train set: ' + repr(len(trainingSet))
	print 'Test set: ' + repr(len(testSet))
	# generate predictions
	predictions=[]
	trainData = np.array(trainingSet)[:,0:np.array(trainingSet).shape[1] - 1]
  	columns = trainData.shape[1] 
	X = np.array(trainData)
	y = np.array(trainingSet)[:,columns]
	clf = BaggingClassifier(SVC(C=1.0, kernel='linear', degree=5, gamma='auto', coef0=0.0, shrinking=True, probability=False,tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, random_state=None))
	clf.fit(X, y)
	testData = np.array(testSet)[:,0:np.array(trainingSet).shape[1] - 1]
	X_test = np.array(testData)
	y_test = np.array(testSet)[:,columns]
	accuracy = clf.score(X_test,y_test)
	accuracy *= 100
	print("Accuracy %:",accuracy) 
開發者ID:DedSecInside,項目名稱:Awesome-Scripts,代碼行數:25,代碼來源:BaggedSVM.py

示例10: __init__

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def __init__(self,
                 base_classifier=None,
                 n_classifiers=100,
                 combination_rule='majority_vote'):

        self.base_classifier = base_classifier
        self.n_classifiers = n_classifiers

        # using the sklearn implementation of bagging for now
        self.sk_bagging = BaggingClassifier(base_estimator=base_classifier,
                                            n_estimators=n_classifiers,
                                            max_samples=1.0,
                                            max_features=1.0)

        self.ensemble = Ensemble()
        self.combiner = Combiner(rule=combination_rule) 
開發者ID:viisar,項目名稱:brew,代碼行數:18,代碼來源:bagging.py

示例11: test_classification

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_classification():
    # Check classification for various parameter settings.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)
    grid = ParameterGrid({"max_samples": [0.5, 1.0],
                          "max_features": [1, 2, 4],
                          "bootstrap": [True, False],
                          "bootstrap_features": [True, False]})

    for base_estimator in [None,
                           DummyClassifier(),
                           Perceptron(tol=1e-3),
                           DecisionTreeClassifier(),
                           KNeighborsClassifier(),
                           SVC()]:
        for params in grid:
            BaggingClassifier(base_estimator=base_estimator,
                              random_state=rng,
                              **params).fit(X_train, y_train).predict(X_test) 
開發者ID:alvarobartt,項目名稱:twitter-stock-recommendation,代碼行數:23,代碼來源:test_bagging.py

示例12: test_base

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_base():
    # Check BaseEnsemble methods.
    ensemble = BaggingClassifier(
        base_estimator=Perceptron(tol=1e-3, random_state=None), n_estimators=3)

    iris = load_iris()
    ensemble.fit(iris.data, iris.target)
    ensemble.estimators_ = []  # empty the list and create estimators manually

    ensemble._make_estimator()
    random_state = np.random.RandomState(3)
    ensemble._make_estimator(random_state=random_state)
    ensemble._make_estimator(random_state=random_state)
    ensemble._make_estimator(append=False)

    assert_equal(3, len(ensemble))
    assert_equal(3, len(ensemble.estimators_))

    assert isinstance(ensemble[0], Perceptron)
    assert_equal(ensemble[0].random_state, None)
    assert isinstance(ensemble[1].random_state, int)
    assert isinstance(ensemble[2].random_state, int)
    assert_not_equal(ensemble[1].random_state, ensemble[2].random_state)

    np_int_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                        n_estimators=np.int32(3))
    np_int_ensemble.fit(iris.data, iris.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:29,代碼來源:test_base.py

示例13: test_base_zero_n_estimators

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_base_zero_n_estimators():
    # Check that instantiating a BaseEnsemble with n_estimators<=0 raises
    # a ValueError.
    ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                 n_estimators=0)
    iris = load_iris()
    assert_raise_message(ValueError,
                         "n_estimators must be greater than zero, got 0.",
                         ensemble.fit, iris.data, iris.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:11,代碼來源:test_base.py

示例14: test_base_not_int_n_estimators

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_base_not_int_n_estimators():
    # Check that instantiating a BaseEnsemble with a string as n_estimators
    # raises a ValueError demanding n_estimators to be supplied as an integer.
    string_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                        n_estimators='3')
    iris = load_iris()
    assert_raise_message(ValueError,
                         "n_estimators must be an integer",
                         string_ensemble.fit, iris.data, iris.target)
    float_ensemble = BaggingClassifier(base_estimator=Perceptron(tol=1e-3),
                                       n_estimators=3.0)
    assert_raise_message(ValueError,
                         "n_estimators must be an integer",
                         float_ensemble.fit, iris.data, iris.target) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:16,代碼來源:test_base.py

示例15: test_oob_score_classification

# 需要導入模塊: from sklearn import ensemble [as 別名]
# 或者: from sklearn.ensemble import BaggingClassifier [as 別名]
def test_oob_score_classification():
    # Check that oob prediction is a good estimation of the generalization
    # error.
    rng = check_random_state(0)
    X_train, X_test, y_train, y_test = train_test_split(iris.data,
                                                        iris.target,
                                                        random_state=rng)

    for base_estimator in [DecisionTreeClassifier(), SVC(gamma="scale")]:
        clf = BaggingClassifier(base_estimator=base_estimator,
                                n_estimators=100,
                                bootstrap=True,
                                oob_score=True,
                                random_state=rng).fit(X_train, y_train)

        test_score = clf.score(X_test, y_test)

        assert_less(abs(test_score - clf.oob_score_), 0.1)

        # Test with few estimators
        assert_warns(UserWarning,
                     BaggingClassifier(base_estimator=base_estimator,
                                       n_estimators=1,
                                       bootstrap=True,
                                       oob_score=True,
                                       random_state=rng).fit,
                     X_train,
                     y_train) 
開發者ID:PacktPublishing,項目名稱:Mastering-Elasticsearch-7.0,代碼行數:30,代碼來源:test_bagging.py


注:本文中的sklearn.ensemble.BaggingClassifier方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。