當前位置: 首頁>>代碼示例>>Python>>正文


Python filters.median方法代碼示例

本文整理匯總了Python中skimage.filters.median方法的典型用法代碼示例。如果您正苦於以下問題:Python filters.median方法的具體用法?Python filters.median怎麽用?Python filters.median使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在skimage.filters的用法示例。


在下文中一共展示了filters.median方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。

示例1: compute_binary_mask_sprengel

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def compute_binary_mask_sprengel(spectrogram, threshold):
    """ Computes a binary mask for the spectrogram
    # Arguments
        spectrogram : a numpy array representation of a spectrogram (2-dim)
        threshold   : a threshold for times larger than the median
    # Returns
        binary_mask : the binary mask
    """
    # normalize to [0, 1)
    norm_spectrogram = normalize(spectrogram)

    # median clipping
    binary_image = median_clipping(norm_spectrogram, threshold)

    # erosion
    binary_image = morphology.binary_erosion(binary_image, selem=np.ones((4, 4)))

    # dilation
    binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))

    # extract mask
    mask = np.array([np.max(col) for col in binary_image.T])
    mask = smooth_mask(mask)

    return mask 
開發者ID:johnmartinsson,項目名稱:bird-species-classification,代碼行數:27,代碼來源:preprocessing.py

示例2: median_clipping

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def median_clipping(spectrogram, number_times_larger):
    """ Compute binary image from spectrogram where cells are marked as 1 if
    number_times_larger than the row AND column median, otherwise 0
    """
    row_medians = np.median(spectrogram, axis=1)
    col_medians = np.median(spectrogram, axis=0)

    # create 2-d array where each cell contains row median
    row_medians_cond = np.tile(row_medians, (spectrogram.shape[1], 1)).transpose()
    # create 2-d array where each cell contains column median
    col_medians_cond = np.tile(col_medians, (spectrogram.shape[0], 1))

    # find cells number_times_larger than row and column median
    larger_row_median = spectrogram >= row_medians_cond*number_times_larger
    larger_col_median = spectrogram >= col_medians_cond*number_times_larger

    # create binary image with cells number_times_larger row AND col median
    binary_image = np.logical_and(larger_row_median, larger_col_median)
    return binary_image 
開發者ID:johnmartinsson,項目名稱:bird-species-classification,代碼行數:21,代碼來源:preprocessing.py

示例3: subtract_background_median

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def subtract_background_median(z, footprint):
    """Remove background using a median filter.

    Parameters
    ----------
    footprint : int
        size of the window that is convoluted with the array to determine
        the median. Should be large enough that it is about 3x as big as the
        size of the peaks.

    Returns
    -------
        Pattern with background subtracted as np.array
    """

    selem = morphology.square(footprint)
    # skimage only accepts input image as uint16
    bg_subtracted = z - filters.median(z.astype(np.uint16), selem).astype(z.dtype)

    return np.maximum(bg_subtracted, 0) 
開發者ID:pyxem,項目名稱:pyxem,代碼行數:22,代碼來源:expt_utils.py

示例4: compute_binary_mask_lasseck

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def compute_binary_mask_lasseck(spectrogram, threshold):
    # normalize to [0, 1)
    norm_spectrogram = normalize(spectrogram)

    # median clipping
    binary_image = median_clipping(norm_spectrogram, threshold)

    # closing binary image (dilation followed by erosion)
    binary_image = morphology.binary_closing(binary_image, selem=np.ones((4, 4)))

    # dialate binary image
    binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))

    # apply median filter
    binary_image = filters.median(binary_image, selem=np.ones((2, 2)))

    # remove small objects
    binary_image = morphology.remove_small_objects(binary_image, min_size=32, connectivity=1)

    mask = np.array([np.max(col) for col in binary_image.T])
    mask = smooth_mask(mask)

    return mask


# TODO: This method needs some real testing 
開發者ID:johnmartinsson,項目名稱:bird-species-classification,代碼行數:28,代碼來源:preprocessing.py

示例5: compute_median

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def compute_median(img, params):
    median_disk_size = int(params.get("median_disk_size", 3))
    return median(rgb2gray(img), selem=disk(median_disk_size))[:, :, None] 
開發者ID:choosehappy,項目名稱:HistoQC,代碼行數:5,代碼來源:ClassificationModule.py

示例6: auto_liver_mask

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def auto_liver_mask(vol, ths = [(80, 140), (110, 160), (70, 90), (60, 80), (50, 70), (40, 60), (30, 50), (20, 40), (10, 30), (140, 180), (160, 200)]):
    vol = filters.gaussian(vol, sigma = 2, preserve_range = True)
    mask = np.zeros_like(vol, dtype = np.bool)
    max_area = 0
    for th_lo, th_hi in ths:
        print(th_lo, th_hi)
        bw = np.ones_like(vol, dtype = np.bool)
        bw[vol < th_lo] = 0
        bw[vol > th_hi] = 0
        if np.sum(bw) <= max_area:
            continue
        with concurrent.futures.ProcessPoolExecutor(8) as executor:
            jobs = list(range(bw.shape[-1]))
            args1 = [bw[:, :, z] for z in jobs]
            args2 = [morphology.disk(35) for z in jobs]
            for idx, ret in tqdm.tqdm(zip(jobs, executor.map(filters.median, args1, args2)), total = len(jobs)):
                bw[:, :, jobs[idx]] = ret
        # for z in range(bw.shape[-1]):
        #     bw[:, :, z] = filters.median(bw[:, :, z], morphology.disk(35))
        if np.sum(bw) <= max_area:
            continue
        labeled_seg = measure.label(bw, connectivity=1)
        regions = measure.regionprops(labeled_seg)
        max_region = max(regions, key = lambda x: x.area)
        if max_region.area <= max_area:
            continue
        max_area = max_region.area
        mask = labeled_seg == max_region.label
    assert max_area > 0, 'Failed to find the liver area!'
    return mask 
開發者ID:microsoft,項目名稱:Recursive-Cascaded-Networks,代碼行數:32,代碼來源:demo.py

示例7: strange_method

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def strange_method(self, _idx, img0, msk0, lbl0, x0, y0):
        input_shape = self.input_shape
        good4copy = self.all_good4copy[_idx]

        img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
        msk = msk0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]

        if len(good4copy) > 0 and random.random() > 0.75:
            num_copy = random.randrange(1, min(6, len(good4copy) + 1))
            lbl_max = lbl0.max()
            for i in range(num_copy):
                lbl_max += 1
                l_id = random.choice(good4copy)
                lbl_msk = self.all_labels[_idx] == l_id
                row, col = np.where(lbl_msk)
                y1, x1 = np.min(np.where(lbl_msk), axis=1)
                y2, x2 = np.max(np.where(lbl_msk), axis=1)
                lbl_msk = lbl_msk[y1:y2 + 1, x1:x2 + 1]
                lbl_img = img0[y1:y2 + 1, x1:x2 + 1, :]
                if random.random() > 0.5:
                    lbl_msk = lbl_msk[:, ::-1, ...]
                    lbl_img = lbl_img[:, ::-1, ...]
                rot = random.randrange(4)
                if rot > 0:
                    lbl_msk = np.rot90(lbl_msk, k=rot)
                    lbl_img = np.rot90(lbl_img, k=rot)
                x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2),
                                    min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2))
                y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2),
                                    min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2))
                tmp = erosion(lbl_msk, square(5))
                lbl_msk_dif = lbl_msk ^ tmp
                tmp = dilation(lbl_msk, square(5))
                lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk)
                lbl0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_max
                img0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk]
                full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool')
                full_diff_mask[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]] = lbl_msk_dif
                img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask]
                img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask]
                img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask]
            img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
            lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
            msk = self.create_mask(lbl)
        return img, msk

#dbg functions 
開發者ID:selimsef,項目名稱:dsb2018_topcoders,代碼行數:49,代碼來源:image_cropper.py

示例8: copy_cells

# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def copy_cells(self, mask, image, label, img_id, input_shape):
        img0 = image.copy()
        msk0 = mask.copy()
        lbl0 = label.copy()
        yp = 0
        xp = 0
        #todo: refactor it, copied from Victor's code as is, random crops should be outside of this method
        if img0.shape[0] < input_shape[0]:
            yp = input_shape[0] - img0.shape[0]
        if img0.shape[1] < input_shape[1]:
            xp = input_shape[1] - img0.shape[1]
        if xp > 0 or yp > 0:
            img0 = np.pad(img0, ((0, yp), (0, xp), (0, 0)), 'constant')
            msk0 = np.pad(msk0, ((0, yp), (0, xp), (0, 0)), 'constant')
            lbl0 = np.pad(lbl0, ((0, yp), (0, xp)), 'constant')

        good4copy = self.all_good4copy[img_id]

        x0 = random.randint(0, img0.shape[1] - input_shape[1])
        y0 = random.randint(0, img0.shape[0] - input_shape[0])
        img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
        msk = msk0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
        lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]

        if len(good4copy) > 0 and random.random() < 0.05:
            num_copy = random.randrange(1, min(6, len(good4copy) + 1))
            lbl_max = lbl0.max()
            for i in range(num_copy):
                lbl_max += 1
                l_id = random.choice(good4copy)
                lbl_msk = label == l_id
                y1, x1 = np.min(np.where(lbl_msk), axis=1)
                y2, x2 = np.max(np.where(lbl_msk), axis=1)
                lbl_msk = lbl_msk[y1:y2 + 1, x1:x2 + 1]
                lbl_img = img0[y1:y2 + 1, x1:x2 + 1, :]
                if random.random() > 0.5:
                    lbl_msk = lbl_msk[:, ::-1, ...]
                    lbl_img = lbl_img[:, ::-1, ...]
                rot = random.randrange(4)
                if rot > 0:
                    lbl_msk = np.rot90(lbl_msk, k=rot)
                    lbl_img = np.rot90(lbl_img, k=rot)
                x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2),
                                    min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2))
                y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2),
                                    min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2))
                tmp = erosion(lbl_msk, square(5))
                lbl_msk_dif = lbl_msk ^ tmp
                tmp = dilation(lbl_msk, square(5))
                lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk)
                lbl0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_max
                img0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk]
                full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool')
                full_diff_mask[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]] = lbl_msk_dif
                img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask]
                img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask]
                img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask]
            img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
            lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
            msk = self.create_mask(lbl)
        return msk, img, lbl 
開發者ID:selimsef,項目名稱:dsb2018_topcoders,代碼行數:63,代碼來源:dsb_binary.py


注:本文中的skimage.filters.median方法示例由純淨天空整理自Github/MSDocs等開源代碼及文檔管理平台,相關代碼片段篩選自各路編程大神貢獻的開源項目,源碼版權歸原作者所有,傳播和使用請參考對應項目的License;未經允許,請勿轉載。