本文整理匯總了Python中skimage.filters.median方法的典型用法代碼示例。如果您正苦於以下問題:Python filters.median方法的具體用法?Python filters.median怎麽用?Python filters.median使用的例子?那麽, 這裏精選的方法代碼示例或許可以為您提供幫助。您也可以進一步了解該方法所在類skimage.filters
的用法示例。
在下文中一共展示了filters.median方法的8個代碼示例,這些例子默認根據受歡迎程度排序。您可以為喜歡或者感覺有用的代碼點讚,您的評價將有助於係統推薦出更棒的Python代碼示例。
示例1: compute_binary_mask_sprengel
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def compute_binary_mask_sprengel(spectrogram, threshold):
""" Computes a binary mask for the spectrogram
# Arguments
spectrogram : a numpy array representation of a spectrogram (2-dim)
threshold : a threshold for times larger than the median
# Returns
binary_mask : the binary mask
"""
# normalize to [0, 1)
norm_spectrogram = normalize(spectrogram)
# median clipping
binary_image = median_clipping(norm_spectrogram, threshold)
# erosion
binary_image = morphology.binary_erosion(binary_image, selem=np.ones((4, 4)))
# dilation
binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))
# extract mask
mask = np.array([np.max(col) for col in binary_image.T])
mask = smooth_mask(mask)
return mask
示例2: median_clipping
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def median_clipping(spectrogram, number_times_larger):
""" Compute binary image from spectrogram where cells are marked as 1 if
number_times_larger than the row AND column median, otherwise 0
"""
row_medians = np.median(spectrogram, axis=1)
col_medians = np.median(spectrogram, axis=0)
# create 2-d array where each cell contains row median
row_medians_cond = np.tile(row_medians, (spectrogram.shape[1], 1)).transpose()
# create 2-d array where each cell contains column median
col_medians_cond = np.tile(col_medians, (spectrogram.shape[0], 1))
# find cells number_times_larger than row and column median
larger_row_median = spectrogram >= row_medians_cond*number_times_larger
larger_col_median = spectrogram >= col_medians_cond*number_times_larger
# create binary image with cells number_times_larger row AND col median
binary_image = np.logical_and(larger_row_median, larger_col_median)
return binary_image
示例3: subtract_background_median
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def subtract_background_median(z, footprint):
"""Remove background using a median filter.
Parameters
----------
footprint : int
size of the window that is convoluted with the array to determine
the median. Should be large enough that it is about 3x as big as the
size of the peaks.
Returns
-------
Pattern with background subtracted as np.array
"""
selem = morphology.square(footprint)
# skimage only accepts input image as uint16
bg_subtracted = z - filters.median(z.astype(np.uint16), selem).astype(z.dtype)
return np.maximum(bg_subtracted, 0)
示例4: compute_binary_mask_lasseck
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def compute_binary_mask_lasseck(spectrogram, threshold):
# normalize to [0, 1)
norm_spectrogram = normalize(spectrogram)
# median clipping
binary_image = median_clipping(norm_spectrogram, threshold)
# closing binary image (dilation followed by erosion)
binary_image = morphology.binary_closing(binary_image, selem=np.ones((4, 4)))
# dialate binary image
binary_image = morphology.binary_dilation(binary_image, selem=np.ones((4, 4)))
# apply median filter
binary_image = filters.median(binary_image, selem=np.ones((2, 2)))
# remove small objects
binary_image = morphology.remove_small_objects(binary_image, min_size=32, connectivity=1)
mask = np.array([np.max(col) for col in binary_image.T])
mask = smooth_mask(mask)
return mask
# TODO: This method needs some real testing
示例5: compute_median
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def compute_median(img, params):
median_disk_size = int(params.get("median_disk_size", 3))
return median(rgb2gray(img), selem=disk(median_disk_size))[:, :, None]
示例6: auto_liver_mask
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def auto_liver_mask(vol, ths = [(80, 140), (110, 160), (70, 90), (60, 80), (50, 70), (40, 60), (30, 50), (20, 40), (10, 30), (140, 180), (160, 200)]):
vol = filters.gaussian(vol, sigma = 2, preserve_range = True)
mask = np.zeros_like(vol, dtype = np.bool)
max_area = 0
for th_lo, th_hi in ths:
print(th_lo, th_hi)
bw = np.ones_like(vol, dtype = np.bool)
bw[vol < th_lo] = 0
bw[vol > th_hi] = 0
if np.sum(bw) <= max_area:
continue
with concurrent.futures.ProcessPoolExecutor(8) as executor:
jobs = list(range(bw.shape[-1]))
args1 = [bw[:, :, z] for z in jobs]
args2 = [morphology.disk(35) for z in jobs]
for idx, ret in tqdm.tqdm(zip(jobs, executor.map(filters.median, args1, args2)), total = len(jobs)):
bw[:, :, jobs[idx]] = ret
# for z in range(bw.shape[-1]):
# bw[:, :, z] = filters.median(bw[:, :, z], morphology.disk(35))
if np.sum(bw) <= max_area:
continue
labeled_seg = measure.label(bw, connectivity=1)
regions = measure.regionprops(labeled_seg)
max_region = max(regions, key = lambda x: x.area)
if max_region.area <= max_area:
continue
max_area = max_region.area
mask = labeled_seg == max_region.label
assert max_area > 0, 'Failed to find the liver area!'
return mask
示例7: strange_method
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def strange_method(self, _idx, img0, msk0, lbl0, x0, y0):
input_shape = self.input_shape
good4copy = self.all_good4copy[_idx]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
msk = msk0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
if len(good4copy) > 0 and random.random() > 0.75:
num_copy = random.randrange(1, min(6, len(good4copy) + 1))
lbl_max = lbl0.max()
for i in range(num_copy):
lbl_max += 1
l_id = random.choice(good4copy)
lbl_msk = self.all_labels[_idx] == l_id
row, col = np.where(lbl_msk)
y1, x1 = np.min(np.where(lbl_msk), axis=1)
y2, x2 = np.max(np.where(lbl_msk), axis=1)
lbl_msk = lbl_msk[y1:y2 + 1, x1:x2 + 1]
lbl_img = img0[y1:y2 + 1, x1:x2 + 1, :]
if random.random() > 0.5:
lbl_msk = lbl_msk[:, ::-1, ...]
lbl_img = lbl_img[:, ::-1, ...]
rot = random.randrange(4)
if rot > 0:
lbl_msk = np.rot90(lbl_msk, k=rot)
lbl_img = np.rot90(lbl_img, k=rot)
x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2),
min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2))
y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2),
min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2))
tmp = erosion(lbl_msk, square(5))
lbl_msk_dif = lbl_msk ^ tmp
tmp = dilation(lbl_msk, square(5))
lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk)
lbl0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_max
img0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk]
full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool')
full_diff_mask[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]] = lbl_msk_dif
img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask]
img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask]
img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
msk = self.create_mask(lbl)
return img, msk
#dbg functions
示例8: copy_cells
# 需要導入模塊: from skimage import filters [as 別名]
# 或者: from skimage.filters import median [as 別名]
def copy_cells(self, mask, image, label, img_id, input_shape):
img0 = image.copy()
msk0 = mask.copy()
lbl0 = label.copy()
yp = 0
xp = 0
#todo: refactor it, copied from Victor's code as is, random crops should be outside of this method
if img0.shape[0] < input_shape[0]:
yp = input_shape[0] - img0.shape[0]
if img0.shape[1] < input_shape[1]:
xp = input_shape[1] - img0.shape[1]
if xp > 0 or yp > 0:
img0 = np.pad(img0, ((0, yp), (0, xp), (0, 0)), 'constant')
msk0 = np.pad(msk0, ((0, yp), (0, xp), (0, 0)), 'constant')
lbl0 = np.pad(lbl0, ((0, yp), (0, xp)), 'constant')
good4copy = self.all_good4copy[img_id]
x0 = random.randint(0, img0.shape[1] - input_shape[1])
y0 = random.randint(0, img0.shape[0] - input_shape[0])
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
msk = msk0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
if len(good4copy) > 0 and random.random() < 0.05:
num_copy = random.randrange(1, min(6, len(good4copy) + 1))
lbl_max = lbl0.max()
for i in range(num_copy):
lbl_max += 1
l_id = random.choice(good4copy)
lbl_msk = label == l_id
y1, x1 = np.min(np.where(lbl_msk), axis=1)
y2, x2 = np.max(np.where(lbl_msk), axis=1)
lbl_msk = lbl_msk[y1:y2 + 1, x1:x2 + 1]
lbl_img = img0[y1:y2 + 1, x1:x2 + 1, :]
if random.random() > 0.5:
lbl_msk = lbl_msk[:, ::-1, ...]
lbl_img = lbl_img[:, ::-1, ...]
rot = random.randrange(4)
if rot > 0:
lbl_msk = np.rot90(lbl_msk, k=rot)
lbl_img = np.rot90(lbl_img, k=rot)
x1 = random.randint(max(0, x0 - lbl_msk.shape[1] // 2),
min(img0.shape[1] - lbl_msk.shape[1], x0 + input_shape[1] - lbl_msk.shape[1] // 2))
y1 = random.randint(max(0, y0 - lbl_msk.shape[0] // 2),
min(img0.shape[0] - lbl_msk.shape[0], y0 + input_shape[0] - lbl_msk.shape[0] // 2))
tmp = erosion(lbl_msk, square(5))
lbl_msk_dif = lbl_msk ^ tmp
tmp = dilation(lbl_msk, square(5))
lbl_msk_dif = lbl_msk_dif | (tmp ^ lbl_msk)
lbl0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_max
img0[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]][lbl_msk] = lbl_img[lbl_msk]
full_diff_mask = np.zeros_like(img0[..., 0], dtype='bool')
full_diff_mask[y1:y1 + lbl_msk.shape[0], x1:x1 + lbl_msk.shape[1]] = lbl_msk_dif
img0[..., 0][full_diff_mask] = median(img0[..., 0], mask=full_diff_mask)[full_diff_mask]
img0[..., 1][full_diff_mask] = median(img0[..., 1], mask=full_diff_mask)[full_diff_mask]
img0[..., 2][full_diff_mask] = median(img0[..., 2], mask=full_diff_mask)[full_diff_mask]
img = img0[y0:y0 + input_shape[0], x0:x0 + input_shape[1], :]
lbl = lbl0[y0:y0 + input_shape[0], x0:x0 + input_shape[1]]
msk = self.create_mask(lbl)
return msk, img, lbl